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Abstract—Compilers, like other software systems, contain
bugs, and compiler testing is the most widely-used way to assure
compiler quality. A critical task of compiler testing is to generate
test programs that could effectively and efficiently discover bugs.
Though we can configure test generators such as Csmith to
control the features of the generated programs, it is not clear what
test configuration is effective. In particular, an effective test con-
figuration needs to generate test programs that are bug-revealing,
i.e., likely to trigger bugs, and diverse, i.e., able to discover
different types of bugs. It is not easy to satisfy both properties. In
this paper, we propose a novel test-program generation approach,
called HiCOND, which utilizes historical data for configuration
diversification to solve this challenge. HiCOND first infers the
range for each option in a test configuration where bug-revealing
test programs are more likely to be generated based on historical
data. Then, it identifies a set of test configurations that can lead to
diverse test programs through a search method (particle swarm
optimization). Finally, based on the set of test configurations
for compiler testing, HiCOND generates test programs, which
are likely to be bug-revealing and diverse. We have conducted
experiments on two popular compilers GCC and LLVM, and the
results confirm the effectiveness of our approach. For example,
HiCOND detects 75.00%, 133.33%, and 145.00% more bugs than
the three existing approaches, respectively. Moreover, HiCOND
has been successfully applied to actual compiler testing in a global
IT company and detected 11 bugs during the practical evaluation.

Index Terms—Compiler Testing, Configuration, History,
Search

I. INTRODUCTION

Compilers are one of the most important software sys-

tems, since almost all software systems are built from them.

However, like other software systems, compilers also contain

bugs [1]–[7]. Due to their crucial roles, buggy compilers could

cause unintended behaviors, even disasters for all software sys-

tems built from them. Moreover, compiler bugs also increase

the debugging difficulty for software developers. For example,

when a software system built from a compiler crashes, it
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is very hard for the developers to determine whether the

crash is caused by the software they are developing or the

compiler they are using. Therefore, guaranteeing the quality

of compilers is very essential.

Compiler testing is the most widely-used way to assure

compiler quality and has attracted extensive attention over the

years [1], [2], [8]–[13]. In the area of compiler testing, auto-

mated test-program generation is an important aspect, since it

is the initial step in the testing process and its performance has

large impacts on the following testing process [2], [3], [14]. To

support the generation of test programs, several test-program

generators such as Csmith [1] or CLsmith [15] have been

developed. These tools generate a random set of test programs

based on a test configuration (consisting of many options) to

control what features these test programs are likely to include.

For example, the test configuration of Csmith consists of 71

options (such as the probability of the occurrence of return
statement and int type) to control the generation of test

programs, where each option directly reflects the probability of

a specific program feature (an element of a language grammar)

to be included.

An important goal for automated test-program generation is

to discover bugs as many as possible. However, it is not easy to

achieve this goal, and there are two major challenges. First, as

shown in the existing studies [8], [16], compiler bugs are not

evenly distributed across the whole input space, and thus it is

more important to generate test programs that are more likely

to trigger bugs. However, although we can control the test-

program generation through a test configuration, it is not clear

what configuration would lead to such test programs. Second,

it is important to improve the diversity of the generated

test programs to cover a wide range of compiler bugs. As

justified by the state-of-the-art random compiler test-program

generation approach, swarm testing [17], randomizing the con-

figuration options could lead to more bugs being discovered.

In this paper we propose HiCOND (History-Guided
CONfiguration Diversification), a novel test-program genera-

tion approach for compilers. HiCOND consists of two stages,

the first stage is to produce a set of test configurations, and

the second stage is to generate test programs using this set

of test configurations. To address the above-mentioned two
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challenges, the test configurations produced by our approach

HiCOND should be able to generate both bug-revealing and

diverse test programs. To address the first challenge, HiCOND

utilizes the historical data of compiler testing. More specif-

ically, HiCOND collects test programs that have triggered

or have not triggered compiler bugs, mines the associations

between program features and compiler bugs, and infers the

range for each configuration option to generate test programs

with bug-revealing features. To address the second challenge,

HiCOND measures the diversity of test programs generated

under different test configurations based on their program

features, and then uses the particle swarm optimization (PSO),

a heuristic search algorithm, to find a set of test configurations

that both are able to generate diverse test programs and are

within the bug-revealing range of each option. For the ease of

presentation, we call such a set of test configurations a set of
bug-revealing and diverse test configurations in this paper.

We conducted an empirical study to evaluate the effec-

tiveness of our compiler test-program generation approach

HiCOND, using two most popular C compilers (five versions

in total), i.e., GCC and LLVM, based on the most widely-used

test-program generator Csmith [1]. Our experimental results

show that, during the given testing period, HiCOND performs

significantly better than three comparison approaches, i.e., test-

program generation with the default test configuration and the

state-of-the-art random testing techniques—swarm testing and

its variant, for each compiler subject in terms of the number of

detected bugs, the number of unique bugs, and the time spent

on detecting each bug. For example, HiCOND detects 75.00%,

133.33%, and 145.00% more bugs than the three comparison

approaches for all the used compiler subjects, and 61.22% (30

out of 49) bugs detected by HiCOND cannot be detected by

the other three approaches. Moreover, HiCOND spends shorter

time than the other three approaches on detecting almost every

bug.

Furthermore, HiCOND has been successfully applied to the

practical compiler testing in a global IT company A1, and

detected 11 bugs in a private benchmark containing compilers

with real bugs developed in A, whereas Csmith with the

default configuration detected a subset of 3 bugs during the

same testing period.

Our work makes the following major contributions:

• A novel test-program generation approach for compilers

through searching a set of bug-revealing and diverse test

configurations for existing test-program generators based

on testing history.

• Experimental results on GCC and LLVM demonstrating

that HiCOND significantly outperforms all the three ex-

isting approaches, e.g., detecting 75,00%, 133.33%, and

145.00% more bugs than them.

• Practical effectiveness evaluation of HiCOND for testing

the compilers in a global IT company A, detecting 11

bugs during one-week testing.

1Due to the company policy, we hide the name of the company.

Our tool and experimental data are publicly available at:

https://github.com/JunjieChen/HiCOND.

II. BACKGROUND

A. Compiler Test Program Generation

Over the years, various compiler testing techniques have

been proposed, such as RDT (Randomized Differential Test-

ing) [18], DOL (Different Optimization Levels) [3], and EMI

(Equivalence Modulo Inputs) [2]. These techniques tend to

be used by first randomly generating test programs via certain

compiler test-program generator like Csmith [1] and then using

their own test oracles to determine whether compiler bugs are

detected by these test programs. For example, RDT first uses

a generator to randomly generate a test program, and then

compares the outputs of several comparable compilers for the

test program. If the produced results are different, a compiler

bug is detected.

As the initial step of compiler testing, compiler test-program

generation has attracted extensive attention [1], [15], [17],

[19]–[21]. Many efforts focus on creating test-program gener-

ators. These test-program generators typically provide a set of

configuration options for the users to configure the features

of the generated programs. For example, Csmith [1], the

most widely-used C program generator, randomly generates

C programs according to a test configuration with 71 op-

tions. It generates a C program by conducting a series of

decisions, i.e., determining whether a program feature (e.g.,

a return statement) is produced at a decision point. In par-

ticular, Csmith introduces some heuristics and safety checks

to avoid undefined behaviors. Afterwards, CLsmith [15], a

test-program generator for OpenCL compilers, is developed

by adapting Csmith. CLsmith contains six modes and can

generate different types of OpenCL kernels under different

modes. Some research efforts focus on finding effective test

generation methods based on these generators. For example,

Groce et al. [17] proposed an interesting idea called swarm

testing, to generate diverse test programs by randomizing test

configurations of test-program generators.

B. Test Configuration

A typical random test-program generator uses a test con-

figuration to randomly generate valid test programs. A test

configuration consists of a set of options, each of which

directly reflects the probability of a specific program feature

to be included. More specifically, during the generation of a

test program, there are many decision points for each feature,

and at each point the option is used to decide whether the

feature is produced here with the corresponding probability.

For example, the test configuration used in Csmith includes

the following options (i.e., 71 options in total) [1]:

• the generation probability of various kinds of statements,

e.g., return statement and if statement;

• the generation probability of various kinds of types, e.g.,

int, char, and struct;
• the generation probability of various kinds of operators,

e.g., logical operators and arithmetical operators;
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• the generation probability of various kinds of modifiers,

e.g., const and volatile;
• some specific options, e.g., the probability to produce

more structs and unions, and the probability to produce

an inline function;

Under a test configuration, a test-program generator ran-

domly generates a large number of new test programs for

compiler testing. Currently, there are two existing ways to set

the test configuration:

1) Default: A test-program generator has a default test

configuration, each option in which has a default value.

The default test configuration is heavily tuned according

to the experience and knowledge of developers, which

tends to be regarded as an optimal test configuration [17].

2) Swarm Testing: Swarm testing aims to generate diverse

test programs by randomizing test configurations [17].

More specifically, swarm testing randomly sets the value

of each option in a test configuration. In this case, a

test-program generator generates test programs by first

randomly constructing a test configuration and then using

the test configuration to generate test programs.

To sum up, the Default way is to use a fixed test configu-

ration for a test-program generator to generate test programs,

while the Swarm Testing way is to randomize test configura-

tions to generate test programs.

III. APPROACH

An important goal for automated compiler test-program

generation is to generate test programs that could lead to more

bugs being discovered. For illustration, we shall call the space

of test programs that trigger bugs as the bug space and the

goal is to generate diverse test programs within the bug space.

As demonstrated by the existing swarm testing work [17],

it is hard to use one uniform test configuration to generate

test programs to thoroughly explore bug space. To sufficiently

explore bug space, we need a set of test configurations to

generate test programs. Since a test configuration can explore

only a portion of bug space and there are still many test

configurations that even do not enter into bug space at all, each

test configuration in the desired set should be able to generate

test programs exploring a (large) portion of bug space, which is

the first criterion for the desired set. However, it is impossible

to enumerate each test configuration that can generate bug-

revealing test programs, to thoroughly explore bug space. A

more efficient way is to make different test configurations

in the desired set be able to explore different portions of

bug space. That is, the set of test configurations should have

diversity for bug detection, which is the second criterion for

the desired set.

To achieve this goal, we propose HiCOND, a novel compiler

test-program generation approach via history-guided configu-

ration diversification, which explores the whole bug space as

much as possible by finding such a set of test configurations for

compiler test-program generation. To satisfy the first criterion,

HiCOND determines the range of each option in a test

configuration where the bug-revealing test programs are more

likely to be generated. Here, we utilize the statistics on the

basis of historical data to infer the range for each option. To

satisfy the second criterion, HiCOND considers their diversity

when constructing the set of test configurations. Here we first

propose a method to measure the diversity of test programs

generated under different test configurations based on their

program features. Then, we use the PSO algorithm to search

such a set of test configurations within the bug-revealing range

of each option. Figure 1 shows the overview of HiCOND.

In the following, we present the history-based range in-

ference in Section III-A, the diversity measurement in Sec-

tion III-B, and the PSO-based searching in Section III-C.

A. History-based Range Inference

In this step, we need to find a range for each option that has

a high probability of triggering bugs. To do this, we assume

the existence of an optimal setting for each option, and try

to deduce a range to include the setting. We first introduce

the background of options and data collections, then describe

three properties that we assume to hold for the optimal setting,

and finally give our formula utilizing the three properties.

Background. As presented in the existing work [17], each

option in a test configuration controls a specific program

feature during test-program generation. An option is usually

a probability (i.e., a floating-point number ranging from 0 to

100), which refers to the possibility that the corresponding

program feature is successfully produced at each decision

point during test-program generation. That is, there exists a

mapping between an option in a test configuration and a

program feature. Therefore, we can analyze the features in

the generated test programs for testing historical bugs to infer

the range of each option.

In testing history, there are a huge number of test programs

that trigger compiler bugs and those that do not trigger

compiler bugs. Here, we call the former failing test programs,
denoted as PF = {pf1 , pf2 , . . . , pfm}, and the latter passing
test programs, denoted as PP = {pp1

, pp2
, . . . , ppn

}, where
m and n are the size of the failing and passing program set,

respectively. For each test program, we can record the deci-

sions for all program features during test-program generation.

Then, a test program can be represented as a feature vector,

denoted as p = {e1, e2, . . . , er}, where ei (1 ≤ i ≤ r) is the

number of times the ith feature is successfully produced at all

its decision points and r refers to the number of features.

Based on these feature vectors, we compute the probability

that a feature is produced during the generation of all the

failing and passing test programs, respectively. The computa-

tion is shown as Formula 1, where N is the size of the test

program set, eij refers to the number of times the ith feature

is produced at all its decision points during the generation

of the jth test program, and tij refers to the total number of

decision points for the ith feature during the generation of the

jth test program. Here we denote Pr in the Formula 1 on the

failing test programs as Prf and denote Pr on the passing test

programs as Prp.
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Fig. 1: Overview of HiCOND

Pr(i) =

∑N
j=1 eij∑N
j=1 tij

(1)

Properties of Optimal Setting. Now we assume that for

each feature there is an optimal setting that maximizes the

probability of producing failing programs, and the further we

move away from the optimal setting, the lower the probability

of producing failing programs is. Given two features i, j we

denote the initial setting of the corresponding options for

features i, j as pi, pj , and the optimal settings of the options

for feature i, j as qi, qj . It is easy to see that the following

properties hold. In the following properties, we ignore the

statistical errors and assume Prf and Prp to be the precise

probabilities.

A1: qi ≥ pi iff Prf(i) ≥ pi; qi < pi iff Prf(i) < pi.
When qi ≥ pi, it means that a program where more

instances of feature i are produced at decision points has

a higher probability to fail, and thus Prf(i) will be within
[pi, qi], i.e., Prf(i) ≥ pi. Same for the case qi < pi.

A2: Suppose pi = pj . We have |qi−pi| > |qj−pj | iff |Prf(i)−
pi| > |Prf(j)− pj |.
Following the above analysis, the further the optimal

setting deviates the initial setting, the further the Prf value
deviates from the initial setting.

Also, we assume the initial setting reflects the confidence of

the developer. By default the developer would set the initial

setting to 50, the even distribution. The more the developer

changes it away from the even distribution, the higher their

confidence is. Therefore, we have the following property.

A3: If |pi − 50| < |pj − 50|, then |qi − pi| > |qj − pj |.
In other words, the closer the initial setting is to 50, the

smaller the confidence about the feature is, indicating that

the distance between the optimal setting and the initial

setting is larger.

Calculating Ranges. Based on the above three properties, we

now propose a formula to calculate the ranges for options.

Our formula borrows the calculation method of big support
difference [22] for identifying emerging patterns [23], and

utilizes the three properties to include the optimal setting

as much as possible. More specifically, the range of the ith

option R(i) is inferred as follows, where pi refers to the initial

setting of the option for generating these historical data and

diff(i) = Prf(i)− Prp(i).

R(i) =

{
[max(0, pi + diff(i)), pi] , diff(i) < 0
[pi, min(100, pi + diff(i))] , diff(i) ≥ 0

(2)

Now we analyze how the formula utilizes the above three

properties. Regarding A1, it is easy to see that diff(i) < 0
implies Prf (i) < pi, and thus we set the range to be smaller

than pi. The same for the other direction. Regarding A2, the
size of the range depends on diff (i), so when qi deviates

more from pi, the range also becomes large to include qi.
Regarding A3, Prf and Prp are calculated based on the

generated programs under pi, so the closer to 0 or 100 pi
is, the more difficult for Prf and Prp to deviate from pi, and
thus diff becomes smaller.

B. Diversity Measurement

Measuring the diversity of test configurations actually refers

to measure the diversity of generated test programs under

these test configurations. As presented in Section III-A, each

generated test program can be represented as a feature vector,

and thus HiCOND uses the distance between these feature

vectors to measure the diversity of test programs. More

specifically, assuming a set of test configurations are denoted

as C = {c1, c2, . . . , cg}, where g is the number of test

configurations and ci = {oi1, oi2, . . . , oir}, and the generated

test programs under ci are denoted as Pi = {pi1, pi2, . . . , pis},
where s is the number of generated test programs under each

test configuration, HiCOND computes the diversity among Pi

(1 ≤ i ≤ g) to measure the diversity of test configurations.

Intuitively, the generated test programs under a test con-

figuration tend to concentrate on an area of input space.

With this intention, HiCOND first sets a group center for

these generated test programs, and then computes the distance

between different group centers. For test program set Pi

generated under test configuration ci, HiCOND sets the group

center pci by computing the mean of each feature on all

the generated test programs. Then, for a test configuration

HiCOND computes all the distances between the group center
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and other group centers, and uses the minimum distance

among them as the distance between this test configuration

and all other test configurations. The computation is shown in

Formula 3, where HiCOND uses the Manhattan Distance [24]

as the distance formula for Dist(pci, pcj).

Diversity(ci) = minj∈[1,g]&j �=i(Dist(pci, pcj)) (3)

C. PSO-based Searching

To construct a set of test configurations exploring bug

space as much as possible, HiCOND adopts the particle

swarm optimization (PSO) algorithm [25] to search for an

optimal set of test configurations. The reason why we choose

PSO is that PSO is very effective to search in a continuous

space [26], [27], which aligns to our problem where we search

the floating-point probability of each option also in continuous

space.

In our problem, each particle in PSO is a test configuration

ci, and our expected output is a set of diverse test configu-

rations exploring the whole bug space. Therefore, we hope

particles to fly to different portions of bug space during the

searching process. According to this intention, we define the

fitness function of the PSO-based searching as the diversity

among test configurations, which is computed based on Sec-

tion III-B. The larger the fitness value of a test configuration

is, the larger diversity the test configuration has with other test

configurations.

During the PSO-based searching process, HiCOND first

initiates a set of particles (i.e., test configurations). Since

HiCOND should search the test configurations under which

the generated test programs are more likely to trigger compiler

bugs, it sets the search space for each option based on the

inferred range in Section III-A. In particular, each particle has

its own velocity for each moment vti = {vti1, vti2, . . . , vtir},
where t refers to the tth moment. Also, we denote a particle for

the tth moment as cti = {cti1, cti2, . . . , ctir}. In each moment,

HiCOND utilizes the fitness function to evaluate the quality

of each particle, and then updates each particle including

its velocity. Formula 4 shows the updating of the velocity.

In this formula, ω, ς1, and ς2 are three weights where ω
refers to the inertia weight and the other two weights refer to

the acceleration factors; γ1 and γ2 are two random numbers

between 0 and 1; btij refers to the jth option of the personal

optimum test configuration that the ith test configuration has

reached before moment t; and btgj refers to the jth option of the

global optimum test configuration that all test configurations

have reached before moment t; Please note that optimum here

refers to the largest fitness values. Then the test configuration

can be updated as shown in Formula 5.

vt+1
ij = ωvtij + ς1γ1(b

t
ij − ctij) + ς2γ2(b

t
gj − ctij) (4)

ct+1
ij = ctij + vt+1

ij (5)

Each particle (i.e., test configuration) keeps changing as

above, and finally when reaching the terminating condition

(i.e., the pre-defined number of iterations/moments), a set of

bug-revealing and diverse test configurations are found.

Finally, HiCOND utilizes the set of test configurations to

generate test programs for testing compilers. Since only one

test configuration can be used when generating a test program,

HiCOND randomly selects a test configuration from the set

every time to generate a test program.

IV. EXPERIMENTAL STUDY DESIGN

In the study, we address the following research questions:

• RQ1: How does HiCOND perform compared with exist-

ing compiler test-program generation approaches?

• RQ2: Does HiCOND perform well in different scenarios

(including cross-version and cross-compiler scenarios)?

• RQ3: Does each component contribute to HiCOND?

A. Subjects and Test Programs

In the study, we used two popular C compilers as subjects,

i.e., GCC and LLVM, following the existing compiler testing

research [1], [3], [8], [14], [28]–[30]. More specifically, we

used three versions of GCC compilers and two versions of

LLVM compilers for the x86 64-Linux platform, i.e., GCC-

4.4.0, GCC-4.5.0, GCC-4.6.0, LLVM-2.6, and LLVM-6.0.1.

On average, the size of GCC is 1,411K SLOC (source lines

of code) and the size of LLVM is 1,470K SLOC. In particular,

these used compiler versions include both old release versions

and a recent release version. The reason is that the older

releases usually contain more bugs and give more statistically

significant results, while we also used a recent release of

LLVM to investigate whether HiCOND still works well for

a new release version. Besides, HiCOND relies on historical

data. In the study, we collected historical data on GCC-4.3.0,

which is released before all the subjects in our study. Here the

collected historical data include the test programs triggering

bugs and the test programs not triggering bugs on GCC-4.3.0.

Please note that all the used historical bugs on GCC-4.3.0 were

fixed before all the used subjects in our study are released.

B. Tools and Implementations

In our study, we used Csmith [1], the most widely-used

C program generator [3], [8], [17], [20], [31], as the studied

random test-program generator. As described in Section II-B,

Csmith uses a test configuration with 71 options to control

the test-program generation. It takes a test configuration file as

input and then generates test programs based on the given test

configuration in the file. When collecting the historical data on

GCC-4.3.0, we used Csmith with its default test configuration

to generate test programs, which are divided into two sets (i.e.,

failing test program set and passing test program set) according

to their testing results. Here we used the DOL technique to

test compilers, which is one of the most widely-used compiler

testing techniques [3], [8], [28]. That is, if a test program

produces different outputs under different optimization levels

of a compiler given the same test inputs, a compiler bug is

detected and this test program is a bug-revealing test program.
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To record all the decisions of program features during

test-program generation for HiCOND, we adapted Csmith

to output all the decisions when generating a test program.

For the PSO algorithm used in HiCOND, we set ς1 and ς2
to be 2, ω to be 1, the number of particles to be 10, the

times of iterations to be 100, and the number of generated

test programs under each test configuration s to be 350. In

particular, we investigated the impact of main parameters in

PSO on HiCOND in Section VIII. In addition, we set the

testing period to be 10 days in our study. We implemented

HiCOND and all experimental scripts using C++, Python, and

Perl. Our study was conducted on a workstation with four-core

CPU, 120G memory, and Ubuntu 14.04 operating system.

C. Comparison Approaches

HiCOND is a compiler test-program generation approach,

which searches a set of bug-revealing and diverse test con-

figurations of random test-program generators. Therefore, we

chose the comparison approaches that also utilize test configu-

rations of random test-program generators to control compiler

test-program generation.

As described in Section II-B, there are two ways to set

a test configuration for test-program generation, i.e., Default
and Swarm Testing. For swarm testing, its original version

proposed in the paper [17] randomly sets the value of each

configuration option to be 0 or 100. In this paper we also

consider a natural variant of swarm testing that randomly

sets the value of each option to be a floating-point number

ranging from 0 to 100. For the ease of presentation, we call the

approach utilizing the Default way DefaultTest, that utilizing
the original Swarm Testing way OriSwarm, and that utilizing

the variant Swarm Testing way VarSwarm in this paper.

There are two key components in HiCOND, i.e., range

inference and PSO-based searching. To investigate whether

each component contributes to HiCOND, we have two vari-

ants of HiCOND. The first variant is HiCONDglobal, which

removes range inference from HiCOND and conducts PSO-

based searching globally (i.e., ranging from 0 to 100 for

each option). The second variant is HiCONDrandom, which

removes PSO-based searching from HiCOND and conducts

random searching within the inferred range for each option.

To answer RQ3, we compared HiCOND with the two variants.

D. Application Scenarios

Here we consider two application scenarios of HiCOND,

including cross-version scenario and cross-compiler scenario.

Cross-version scenario: HiCOND searches a set of bug-

revealing and diverse test configurations based on the historical

data of a compiler version and then uses the set of test

configurations to generate test programs for a later version of

the compiler. In our study, HiCOND used the data of GCC-

4.3.0 to search test configurations and then used the searched

test configurations to generate test programs for GCC-4.4.0,

GCC-4.5.0, and GCC-4.6.0, respectively. Here we considered

a series of later versions to investigate the stability of the test

configurations searched by HiCOND.

Cross-compiler scenario: HiCOND searches a set of bug-

revealing and diverse test configurations based on the historical

data of a compiler and then uses the set of test configurations

to generate test programs for another compiler. In our study,

HiCOND also used the data of GCC-4.3.0 to search test

configurations and then used the searched test configurations

to generate test programs for LLVM-2.6 and LLVM-6.0.1,

respectively. In this way, we can evaluate the generality of

HiCOND cross different compilers.

E. Metrics

In our study, we used two metrics to measure the effective-

ness of compiler test-generation approaches. The first one is

the number of bugs detected during the given testing period.

We adopted Correcting Commits [3], a method commonly used

in existing studies [8], [32], to identify the number of detected

bugs from a set of failing test programs. More specifically, for

each failing test program, the Correcting Commits method is

to find the first commit correcting the bug, i.e., the committed

version makes the test program pass. If two failing test

programs have the same correcting commit, they are regarded

as triggering the same bug. The number of correcting commits

is approximately regarded as the number of detected bugs. The

accuracy of this method has been demonstrated in the existing

study [3]. The second one is the time spent on detecting a

compiler bug. This metrics can reflect the performance of

HiCOND on detecting each bug.

F. Experimental Process

First, we collected historical data on GCC-4.3.0 by running

20,000 test programs generated by the adapted Csmith with

the default test configuration. In this way, we collected a set

of failing test programs (around 4000) and a set of passing

test programs (around 16,000). Also, we recorded all the

decisions of program features during the generation of each

test program.

Second, we applied HiCOND, HiCONDglobal, and

HiCONDrandom to search a set of test configurations and

fed the set of test configurations to generate test programs

to test GCC-4.4.0, GCC-4.5.0, GCC-4.6.0, LLVM-2.6, and

LLVM-6.0.1 for 10 days, respectively. We recorded the

testing result and execution time for each test program.

Third, we also applied DefaultTest, OriSwarm, and Var-

Swarm to test each subject for 10 days, and recorded the

testing result and execution time for each test program.

Finally, we measured the number of detected bugs for each

test-program generation approach. In particular, it took us over

half of a year to run our experiments.

V. RESULTS AND ANALYSIS

A. Overall Effectiveness of HiCOND

We analyzed the overall effectiveness of HiCOND com-

pared with the three comparison approaches from three as-

pects, including the number of detected bugs, the number of

unique bugs, and the time spent on detecting each bug.
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Fig. 2: Number of unique bugs

TABLE I: Number of detected bugs within 10 days

Subject HiCOND DefaultTest OriSwarm VarSwarm

GCC-4.4.0 26 14 8 11
GCC-4.5.0 9 6 4 3
GCC-4.6.0 3 2 2 1
LLVM-2.6 9 6 6 5
LLVM-6.0.1 2 0 1 0

Total 49 28 21 20

1) Number of detected bugs: Table I shows the number of

detected bugs during the given 10-day testing period. From

this table, for each subject, HiCOND detected the largest

number of bugs among the four approaches, demonstrating

the effectiveness of HiCOND. In particular, the total number

of detected bugs by HiCOND is 49, which is much larger

than that by DefaultTest (i.e., 28), OriSwarm (i.e., 21), and

VarSwarm (i.e., 20) achieving 75.00%, 133.33%, and 145.00%

improvements, respectively. From the results of LLVM-6.0.1,

a recent release version of LLVM, HiCOND also detects the

largest number of bugs, and DefaultTest and VarSwarm do

not detect any bug during the given 10-day testing period,

indicating that HiCOND still works on the new release version.

Therefore, HiCOND does significantly outperform all the

comparison approaches.

Although OriSwarm and VarSwarm also consider the

diversity of test configurations, they perform worse than

HiCOND. We analyzed the reason behind this phenomenon.

For OriSwarm, it uses 0 or 100 to replace a floating-point num-

ber for each option, which makes all the decisions of a feature

the same during the generation of a test program. Although it

increases the diversity of test configurations, it actually limits

the diversity of generated test programs to some degree. For

VarSwarm, due to its random mechanism of test-configuration

construction, it often produces test configurations that outside

our inferred ranges. A small experiment on 100 configurations

show that in 100% of the time the generated options are

outside the range inferred by HiCOND. As our experiment for

RQ3 will show later, ignoring the ranges lead to significantly

lower performance.

2) Number of unique bugs: These Venn diagrams in Fig-

ure 2 show various relations among the bugs detected by

the four approaches, e.g., the unique bugs and the common

bugs detected by only two approaches. Here we do not

show the results of LLVM-6.0.1 since only HiCOND and

OriSwarm detected bugs on this subject, and there is one

common bug for them and one unique bug for HiCOND.

Figure 2e shows the overall results on all the subjects. From

this figure, each approach is able to detect some unique bugs,

but HiCOND always detects the largest number of unique

bugs. In particular, from Figure 2e, the total number of unique

bugs detected by HiCOND is 30, which is much larger than

that by DefaultTest (i.e., 9), that by OriSwarm (i.e., 12), and

that by VarSwarm (i.e., 10). Also, 61.22% (30 out of 49) bugs

detected by HiCOND are unique. That demonstrates that the

four approaches are able to complement each other to some

degree and HiCOND has the largest unique value among them.

Interestingly, although OriSwarm and VarSwarm detected

fewer bugs, more than half of these bugs are not detected

by the other approaches. The reason is that OriSwarm and

VarSwarm have the ability to explore a larger portion of

input space than the other approaches due to their random

mechanisms of test-configuration construction. Therefore, they

can reach a certain bug space that is not explored by the other

approaches, respectively. Although HiCOND aims to explore

the whole bug space, in fact it is very hard to perfectly achieve

this goal within the given testing period. Therefore, it may

miss a portion of bug space to explore. That also means that

there is still room for further improving HiCOND.

Furthermore, there is also some unique bugs detected by

DefaultTest. The reason is that DefaultTest always focuses on

certain small portion of bug space, and thus it is more likely to

sufficiently explore this portion during the given testing period.

However, the other three approaches have larger exploration

space, and thus they may not sufficiently explore the portion

focused by DefaultTest, causing to miss the detection of some

bugs. To sum up, there exists a trade-off between the deep

exploration for a small portion of bug space and the wide

exploration for the whole bug space, and HiCOND seems to

reach a good balance for it.

3) Time spent on detecting each bug: Table II shows

the time spent on detecting each bug for each approach.

In this table, Column “Bug” refers to each bug, e.g., “1”

refers to the first detected bug and “2” refers to the second

detected bug; Column “HiCOND” refers to the time spent on

detecting each bug by HiCOND; Columns “ΔDefaultTest”,

“ΔOriSwarm”, and “ΔVarSwarm” refer to the difference of
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the time spent on detecting each bug between the comparison

approach and HiCOND, where a positive value means the

comparison approach spent longer time on detecting the bug

than HiCOND while a negative value means it spent shorter

time on detecting the bug. Note that since different approaches

detected different number of bugs, we used “—” to align them

in the table. For example, for the 15th bug in GCC-4.4.0,

it is only detected by HiCOND, and thus we marked “—”

in the cells of ΔDefaultTest, ΔOriSwarm, and ΔVarSwarm.

From this table, for almost all of bugs HiCOND spent the

shortest time on detecting the bug. There are only four bugs

that HiCOND spent longer time than DefaultTest to detect, and

only one bug that HiCOND spent longer time than OriSwarm

and VarSwarm to detect, respectively. That demonstrates that

HiCOND is able to detect almost every bug more efficiently,

indicating the stably good effectiveness of HiCOND.

B. Effectiveness on Different Application Scenarios

We analyzed the effectiveness of HiCOND in different

application scenarios according to Tables I, II and Figure 2.

Since the used historical data by HiCOND is from GCC-4.3.0,

the results of the three GCC versions reflect the effectiveness

of HiCOND in cross-version scenario, and the results of the

two LLVM versions reflect the effectiveness of HiCOND in

cross-compiler scenario.

Through analyzing the effectiveness of HiCOND on three

GCC versions, we found that HiCOND always performs the

best among the four approaches, demonstrating its stably good

effectiveness cross different versions. That means that it is

not necessary to re-search test configurations using HiCOND

for each new version. Also, we found that the improved

effectiveness of HiCOND compared with the other approaches

is reduced, with the gap between the historical version and

testing version increasing. The reason may be either the

number of bugs in new versions becomes smaller or the

capability of the searched test configurations becomes weaker

due to larger gap. Assuming the latter is the reason, we may

boost the capability of HiCOND by adding some new data on

the versions that are closer to the testing version.

Through analyzing the effectiveness of HiCOND on two

LLVM versions, HiCOND also achieves better results than the

other approaches. That demonstrates the cross-compiler ability

of HiCOND. That is, HiCOND is able to be generalized to

different compilers even though it is based on the historical

data on only one compiler.

In summary, HiCOND does perform well in both of cross-

version and cross-compiler scenarios.

C. Contributions of Each Component in HiCOND

Table III shows the comparison results among HiCOND,

HiCONDglobal, and HiCONDrandom in terms of the number of

detected bugs during the 10-day testing period. From this table,

HiCOND significantly outperforms HiCONDglobal, demon-

strating the contribution of the range inference component

in HiCOND. When conducing PSO-based searching globally,

HiCONDglobal can find a set of diverse test configurations for

the whole input space. However, it is very difficult to ensure

these test configurations to be bug-revealing, since the bug

space tends to be only a small part of the whole input space.

In addition, HiCOND performs better than HiCONDrandom,

demonstrating the contribution of the PSO-based searching

component in HiCOND. When randomly searching a set of

test configurations, it is hard to ensure the diversity of these

test configurations. That is, some test configurations searched

by HiCONDrandom may explore the similar portion of the bug

space, leading to the worse effectiveness. To sum up, both of

the components significantly contribute to HiCOND, and the

range inference component makes more contributions.

VI. INDUSTRIAL EVALUATION

HiCOND has been successfully applied to the practical

compiler testing in a global IT company A. This company has

several their own compilers, and a lot of products in company

A are built from them. Therefore, guaranteeing the quality of

these compilers is very important and efficient compiler testing

is in demand. HiCOND aims to efficiently explore the whole

bug space as much as possible, which admirably serves their

needs.

In company A, before integrating a new tool into the

practical testing infrastructure, an effectiveness evaluation of

the tool is necessary. In the practical evaluation of HiCOND,

they used six widely-used compilers developed by company

A with several known real bugs as subjects. In particular,

these compilers are in different application areas and different

platforms, the total size of them is over 9 million SLOC, and

these bugs have different characteristics. HiCOND achieved

great effectiveness for these diverse industrial compilers.

More specifically, HiCOND detected bugs for each of these

compilers and detected 11 bugs in total during one-week

testing. During the same testing period, Csmith with the

default configuration detected 3 bugs, all of which were also

detected by HiCOND. The results demonstrate that HiCOND

is effective in practice. Also, HiCOND is largely appreciated

by the compiler-testing team of company A according to the

practical evaluation.

VII. DISCUSSION

A. Generality of HiCOND

HiCOND is a general approach. First, HiCOND is able to

be generalized to compilers of other programming languages.

Although in our study we evaluated the effectiveness of

HiCOND on only C compilers, there is no part in HiCOND

specific to C. The input of HiCOND is a random test-program

generator that can be controlled by a test configuration. If a

compiler of certain programming language contains such a

random test-program generator, it is easy to apply HiCOND to

it by running the generator to collect a collection of historical

data. Therefore, HiCOND can facilitate testing of any compiler

with such a random test-program generator.

Besides, HiCOND is also able to be generalized to other

software systems taking structurally complex test inputs such

as operating systems and browsers. There are two conditions
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TABLE II: Time spent on detecting each compiler bug (*103 seconds)

Subject Bug HiCOND ΔDefaultTest ΔOriSwarm ΔVarSwarm Subject Bug HiCOND ΔDefaultTest ΔOriSwarm ΔVarSwarm

GCC-4.4.0

1 1.01 -0.23 0.08 -0.53

GCC-4.5.0

1 106.54 48.46 -103.27 159.6
2 1.11 21.4 10.09 0.27 2 133.77 32.72 8.93 133.33
3 4.2 20.42 7.5 12.04 3 158.98 76.22 50.5 279.27
4 8.79 45.73 3.04 92.23 4 194.11 141.02 215.15 —
5 12.51 161.39 5.03 180.07 5 243.92 392.72 — —
6 31.13 149.6 60.83 177.49 6 782.8 -75.3 — —
7 80.17 174.9 581.82 150.09 7 802.59 — — —-
8 83.3 242.75 724.61 184.9 8 812.15 — — —
9 83.66 292.83 — 305.33 9 821.36 — — —

10 88.58 288.8 — 695.6
GCC-4.6.0

1 270.65 51.11 29.6 239.38
11 129.65 393.31 — 670.0 2 356.88 137.35 190.8 —
12 211.81 327.53 — — 3 383.09 — — —
13 225.54 338.59 — —

LLVM-2.6

1 1.43 -0.9 2.27 0.81
14 226.91 532.26 — — 2 1.5 0.9 2.39 2.29
15 267.41 — — — 3 4.37 9.8 44.84 41.7
16 307.41 — — — 4 18.57 -0.08 43.73 64.29
17 321.49 — — — 5 34.11 93.41 79.39 112.47
18 407.36 — — — 6 70.69 66.22 92.99 —
19 568.81 — — — 7 103.92 — — —
20 575.29 — — — 8 370.45 — — —
21 595.19 — — — 9 557.51 — — —
22 727.57 — — —

LLVM-6.0.1
1 328.35 — 332.81 —

23 765.37 — — — 2 793.60 — — —
24 777.54 — — —
25 778.78 — — —
26 815.89 — — —

TABLE III: Comparison among HiCOND, HiCONDglobal,

and HiCONDrandom

Subject HiCOND HiCONDglobal HiCONDrandom

GCC-4.4.0 26 3 14
GCC-4.5.0 9 1 3
GCC-4.6.0 3 1 4
LLVM-2.6 9 5 8
LLVM-6.0.1 2 0 0

Total 49 10 29

applying HiCOND to other software systems: 1) the software

system has such a random test generator; 2) the test inputs of

the software system have features relevant to the options of

the test configuration. There are a large number of software

systems (e.g., operating systems and browsers) taking structure

complex test inputs, which tend to contain many features, and

thus HiCOND can be applied to them to improve their testing.

B. Limitation of HiCOND

Our study has demonstrated the effectiveness of HiCOND

for compiler testing, but there exists a limitation in HiCOND.

HiCOND currently treats each option individually. However,

there may exist various constraints among program features,

and thus different options may have interactions. Also, as

presented in the existing work [8], various combinations

of program features may be also related to compiler bug

detection. Therefore, neglecting the coupling effect may af-

fect the effectiveness of HiCOND. Even though HiCOND

does not explicitly consider interactions of options, HiCOND

measures diversity based on the generated test program under

constraints, which can be regarded as an implicit way. In

fact, the constraints of various program features may be very

complex, and thus it is challenging to consider all of them.

In the future, we will first consider the constraints formed by

two program features.

VIII. THREATS TO VALIDITY

The internal threat to validity mainly lies in our im-
plementations, including HiCOND, swarm testing, and the
experimental scripts. For swarm testing, we re-implemented

it based on the description in the paper [17]. To reduce this

threat, the first two authors carefully checked all the code.

The external threats to validity mainly lie in the subjects,
the studied random test-program generator, and the used
technique for compiler testing. Regarding the subjects, we used
five versions of two compilers as subjects, and these subjects

may not be representative enough for different compilers.

To reduce this threat, we selected the two most popular C

compilers following the existing studies [1], [3], [8], [14], [16],

[28], [33]–[35]. More specifically, we considered different

versions of different compilers and both old and recent release

versions, to evaluate the effectiveness of HiCOND from var-

ious aspects. Furthermore, our industrial evaluation indicates

that our results hold on other compilers. Regarding the studied

random test-program generator, we only used Csmith in our

study, which may not represent other random test-program

generators. However, this threat may not be serious due to

the following reasons. First, Csmith is recognized as the most

effective C program generator and has been widely used to

test C compilers [1], [4]. Second, all recent C compiler testing

studies used only the Csmith test-program generator [2]–[5],

[8], [14]. Third, many other random test-program generators

are adapted from the Csmith generator [2], [9], [15]. Regarding

the used technique for compiler testing, we used the DOL

technique in our study. However, we believe that HiCOND

can be generalized to various compiler testing techniques such

as RDT [18] and EMI [2]. This is because all these compiler
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testing techniques first utilize a test-program generator like

Csmith to generate test programs and then use their test-

oracle mechanisms to detect compiler bugs. HiCOND is a

novel test-program generation approach that is orthogonal to

these compiler testing techniques. Therefore, HiCOND can be

combined with any compiler testing technique and improve

their performance.

The construct threats to validity mainly lie in the metrics,
randomness, the given testing period, the collected historical
data, the used comparison approaches, and the setting of
parameters in HiCOND. Regarding the used metrics, we

adopted the Correcting Commits method to estimate the

number of detected bugs. This method may not be perfectly

precise, but it is the only metric which can automatically

measure the number of bugs with some precision so far [3].

Regarding randomness, since these test-program generation

approaches generate test programs randomly based on a test

configuration, the randomness may impact the effectiveness of

these approaches. To reduce the threat, we use a long testing

period, instead of repeating the testing process several times.

Regarding the testing period, we set the period to be 10 days,

which is relatively long compared with the existing work [3],

[8]. Also, we analyzed the time spent on detecting each bug

so that we can learn whether HiCOND performs well during

various testing periods within 10 days. Regarding the collected

historical data, we ran 20,000 test programs on GCC-4.3.0 to

collect historical data, and the used historical compiler and

the number of test programs may impact the effectiveness

of HiCOND. In the future, we will scale up our historical

data to evaluate the effectiveness of HiCOND and investigate

the impact of different historical data on HiCOND. Regarding

the used comparison approaches, we adopted three existing

approaches and two variants of HiCOND. In the future, we

will try to use other search-based algorithms to investigate the

impact of our used PSO algorithm.

Regarding the parameter setting, we set them following

existing work [36]–[38]. However, the setting may impact the

effectiveness of HiCOND. To reduce this threat, we evaluated

the impacts of two main parameters (i.e., the number of

particles and the times of iterations for PSO) on HiCOND by

using GCC-4.4.0. Here we changed the value of one parameter

each time and remained the values of all other parameters

unchanged. Figure 3 shows the impacts of the two parameters,

where the x-axis represents the various used parameter values.

First of all, HiCOND can always detect more bugs than the

three comparison approaches under all these studied parameter

values during the 10-day testing period, demonstrating the

stable effectiveness of HiCOND. From Figure 3, the default

setting in HiCOND indeed performs better than the other

settings, indicating the good choice of parameter values in

HiCOND. Also, when the value is set to be the smallest for the

two parameters, HiCOND performs the worst, since HiCOND

cannot sufficiently explore the bug space in these cases.
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Fig. 3: Impact of parameters on HiCOND

IX. RELATED WORK

A. Compiler Testing

In the area of compiler testing, test-program generation

attracts the most attention all the time [1], [15], [19], [39],

[40], and our work also targets at this topic. The most related

work to ours is swarm testing, which facilitates test program

generation by randomizing test configuration of a test-program

generator. Different from it, our work utilizes historical data

to search a set of bug-revealing and diverse test configurations

for test-program generation. Afterward, Alipour et al. [20]

proposed directed swarm testing to generate test programs

focusing on a given compiler code element, making the

targeted code element be tested more frequently, which also

uses historical data. However, our work has a different goal

with it. Our work aims to explore the whole bug space while

the latter focuses on the testing of the given code element.

Besides test-program generation from scratch, some other

test-program generation is to mutate existing test programs.

For example, EMI [2] is to generate an equivalent program

variant with the original test program given a set of test

inputs by mutating the original test program, and then use the

program pairs to test compilers. EMI has three instantiations,

including Orion [2], Athena [14], and Hermes [29].

Furthermore, some existing work focuses on prioritizing test

programs [8], [32]. Chen et al. [32] proposed a text-vector

based test prioritization approach for compilers. Their ap-

proach transforms each test program to a text vector by extract-

ing a set of characteristics of programs, and then ranks them

based on their distances between vectors. Afterwards, Chen et

al. [8] proposed a machine-learning based test prioritization

approach, called LET. LET first learns two models based on

historical data, including a capability model and a time model.

Then LET prioritizes test programs based on the two models.

Our work is also based on historical data. Different from LET,

our work targets at compiler test-program generation rather

than compiler test-program prioritization. More specifically,

our work aims to search a set of bug-revealing and diverse

test configurations for test-program generation.

B. History-based and Search-based Software Testing

History information has been used to solve software testing

problems [8], [41]–[49]. For example, Kim and Porter [41]

proposed to prioritize tests in resource constrained environ-

ments based on test execution history. Different from them,

HiCOND uses program features of historical passing and
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failing test programs to infer ranges of configuration options,

where it is more likely to generate test programs triggering

compiler bugs. Search-based software testing refers to trans-

form the problem of software testing to a search problem, and

then use a search algorithm to solve it [50]. In the literature,

there are many search-based test generation approaches [51]–

[57]. For example, Fraser and Arcuri [58] proposed Evosuite,

a search-based unit test generation tool for Java projects based

on evolutionary search. Different from them, our work targets

at test program generation for compilers, where we proposed

HiCOND to search a set of bug-revealing and diverse test

configurations for better test-program generation.

X. CONCLUSION

In this paper, we propose a novel test-program genera-

tion approach via history-guided configuration diversification,

called HiCOND. HiCOND first utilizes historical data to infer

the range of each configuration option of a test-program gen-

erator where bug-revealing test programs are more likely to be

generated. It then utilizes the PSO algorithm to search a set of

diverse test configurations within the inferred ranges. Finally,

HiCOND generates test programs using the identified test

configurations for compiler testing. In this way, we can obtain

test programs that are more likely to explore the whole bug

space. We conducted experiments to evaluate the effectiveness

of HiCOND in testing GCC and LLVM. The results show that

HiCOND significantly outperforms the existing approaches.

Furthermore, HiCOND has been successfully applied to actual

compiler testing in company A, and detected 11 bugs in

production environment.
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