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Abstract—Metamorphic relations (MRs) describe the invariant
relationships between program inputs and outputs. By checking
for violations of MRs, faults in programs can be detected. Iden-
tifying MRs manually is a tedious and error-prone task. In this
paper, we propose AutoMR, a novel method for systematically
inferring and cleansing MRs. AutoMR can discover various
types of equality and inequality MRs through a search method
(particle swarm optimization). It also employs matrix singular-
value decomposition and constraint solving techniques to remove
the redundant MRs in the search results. Our experiments on 37
numerical programs from two popular open source packages
show that AutoMR can effectively infer a set of accurate
and succinct MRs and outperform the state-of-the-art method.
Furthermore, we show that the discovered MRs have high fault
detection ability in mutation testing and differential testing.

Index Terms—Metamorphic relations, program invariants,
search-based method, metamorphic testing.

I. INTRODUCTION

Metamorphic relations (MRs) [1]–[6] describe the invari-

ant relationships between program inputs and outputs. For

example, when testing a program which calculates the sin
value for an input, it is not obvious for testers to determine

the expected value of an arbitrary input. However, testers

can test the program by leveraging the mathematical property

of the sin function such as sin(x) + sin(−x) = 0 and

sin(x) − sin(x + 2π) = 0. These properties are MRs that

should hold for all inputs of the program. In other words,

testers can indirectly test the implementation by investigating

whether the inputs and outputs satisfy the MRs. In this way,

the program can be tested without knowing the correct outputs

for arbitrary inputs. MRs have been used in metamorphic

testing [7]–[11] to test programs that do not have easy-to-

obtain test oracles [12], such as scientific programs, search

engines, bioinformatics programs, etc.

In current practice MRs are mainly identified in an ad-hoc

manner [6], which requires testers to have solid knowledge

about the program and the problem domain. Recently, several

studies have been conducted to automatically identify MRs [7],

[13]–[16]. However, these works are still in early stage [6]. For

example, Zhang et al. [16] proposed an approach to automat-

ically infer two types of polynomial MRs, the kind of MRs

which can be expressed as polynomials. They developed a

software solution called MRI (Metamorphic Relation Inferrer)

and evaluated the inferred MRs by detecting bugs in mutation

testing. Although effective, their approach was limited to only

two types of equality MRs and a significant number of the

inferred MRs were redundant [16]. The identification and

selection of high-quality MRs are still recognized as a big

challenge [6].

In this paper, we present AutoMR, a novel approach to

automatic identification of various types of high-quality MRs.

In our approach, we first propose a general parameterization

of arbitrary polynomial MRs, including both equalities and

inequalities. We then adopt the PSO (particle swarm opti-

mization) technique to search for suitable parameters for the

MRs. Finally, with the help of matrix SVD (singular-value

decomposition) and constraint solving techniques, we cleanse

the MRs by removing the redundancy. In this way, we obtain a

set of accurate and succinct MRs. The discovered and cleansed

MRs are important program invariants that are useful for

program understanding and maintenance. They are also useful

for software testing, especially regression testing, mutation

testing, and differential testing [17].

We have applied our approach to 37 numerical programs

from NumPy [18] and Apache Commons Math [19], and

inferred eight types of equality and inequality MRs. To eval-

uate the ability of MRs in software testing, we utilize the

MRs to test 625 mutated programs (i.e., 625 seeded faults).

The results show that in total 374 mutants were killed (i.e.,

faults were successfully revealed) by the MRs inferred by

AutoMR, nearly 4 times as many as those detected by the

state-of-the-art approach MRI [16]. We also use the MRs

inferred from the NumPy programs to discover faults seeded

in Apache programs that have the same specifications. The

results confirm the effectiveness of MRs in differential testing

[17].

The main contributions of this paper include:

• A general method to infer both equality and inequal-

ity polynomial MRs of arbitrary degree. To our best

knowledge, this is the first attempt to automatically infer

inequality MRs.

• A novel approach integrating matrix SVD and constraint

solving techniques to remove redundant MRs.

• An experimental study to demonstrate that the MRs in-

ferred by AutoMR are able to detect bugs and outperform

the state-of-the-art approach.
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The organization of this paper is as follows. In Section II, we

present the background and motivation of MR identification.

In Section III, we present our approach and an example to

illustrate the ability of AutoMR. We design our experiment in

Section IV and present the results in Section V. In Section

VI we discuss the results and analyze the threats to validity.

Section VII discusses the related work and Section VIII

concludes this paper.

II. BACKGROUND AND MOTIVATION

Identifying MRs manually is a tedious and error-prone task.

Although several studies have been conducted to automatically

identify MRs [7], [13], [14], [16], this research is still at its

early stage. The MRI approach proposed by Zhang et al. [16]

is the current state-of-the-art. MRI can discover linear and

quadratic equality MRs. It first parameterizes two predefined

types of MRs, then searches for the suitable parameters by

multiple executions of the program, and finally filters away

false MRs by conducting more executions. However, the

following issues have not been addressed by previous works:

� Inequality MRs. MRs are often mistaken for just equality

relations [6]. Inequality MRs are also able to hold important

information about programs’ behaviors. For example, exp(x+
1)− exp(x) > 0 is an important MR of the program exp, as

this MR describes its monotonicity.

� MRs involving more inputs. Usually an MR is considered

to involve only two inputs and their corresponding outputs. An

example of such case is the MR sin(x)+sin(−x) = 0, which

describes the relation of two inputs x and −x and their outputs.

However, there also exist some MRs that involve three or more

inputs and their outputs, which can describe more complex

logic of the program. For example, a more complicated MR,

sin(2x) − 2sin(x)sin(π/2 − x) = 0, involves three inputs,

i.e., x, 2x and π/2− x.

� Arbitrary-degree MRs. MRI allows the input relation to

be linear and the output relation to be linear or quadratic, thus

not able to identify relations of higher degrees. For example,

for the program of sin, MR sin(x) + sin(−x) = 0 could be

found but a third degree MR sin3(x)−3sin(x)−4sin(3x) = 0
could not be found.

� Redundant MRs. The MRs obtained by search-based

methods contain an amount of redundancy, resulting in extra

efforts on verifying and applying MRs. For example, after

manually checking the inferred MRs of a program, Zhang et

al. found that only 2 out of 219 were unique and all the other

217 MRs were redundant [16].

In this paper, we propose a novel automatic MR discov-

ery approach that can overcome the above limitations. Our

approach can infer arbitrary polynomial MRs and support

inequality MRs, as well as remove the redundant ones.

III. PROPOSED APPROACH

In this section, we describe the proposed approach to

automatic discovery of MRs for numerical programs. Figure 1

illustrates the overall workflow of AutoMR. First, we design

a general method for parameterizing arbitrary polynomial

equality or inequality MRs (Section III-A) and adopt PSO to

search for the parameters based on a set of randomly generated

test inputs (Section III-B). Then another set of test inputs is

randomly generated and applied to the search results to filter

away the false MRs (Section III-C). Next, we employ SVD

and constraint solving techniques to detect the redundant MRs

(Section III-D), thus obtaining succinct MRs that can be used

for program understanding and testing.

A. Parameterizing arbitrary equality and inequality polyno-
mial MRs

1) Definitions: Without loss of generality, for a program

under test P , we assume that:

• The program takes the input i and produces the corre-

sponding output o:

P (i) = o

• Each input i has n elements:

i =
(
i1 i2 . . . in

)T
• Each output o has m elements:

o =
(
o1 o2 . . . om

)T
We define a polynomial MR in terms of input relation and

output relation:

• The MR involves h inputs and their corresponding out-

puts. The inputs are denoted as i(1), i(2) . . . i(h), the

outputs are denoted as o(1),o(2) . . .o(h).

• The inputs comply with a k-degree polynomial relation,

denoted as Rinput.

• Their corresponding outputs comply with a l-degree

polynomial relation, denoted as Routput.

With the above definitions, an MR of P can be described as:

If h inputs, i(1), i(2) . . . i(h), satisfy the input relation Rinput,
their corresponding outputs, o(1),o(2) . . .o(h), will comply
with the output relation Routput.

We describe the details about parameterizing the MRs in

the following subsections. We will also give an example to

explain the concepts.
2) Input relation: Firstly, we consider the equality input

relations. i(1) is selected as the base input and we construct a

vector u, which comprises the products of the combinations

for the elements of the base input, from 0-degree (constant

term) to k-degree (highest-degree term). As u contains all the

possible terms of the polynomials, in the following process we

can just focus on finding the appropriate coefficients for these

terms. The number of elements of u is denoted as t, where

t = 1 + n+
(n+ 2− 1)!

2!× (n− 1)!
+ . . .+

(n+ k − 1)!

k!× (n− 1)!
(1)

To satisfy Rinput, any of the inputs other than i(1) can be

expressed as i(j) = A(j)u, j = 2, 3 . . . h, where A(j) is a

(n× t) matrix which we aim to find. Then the Rinput can be

described as:

Rinput : i
(j) = A(j)u, j = 2, 3 . . . h (2)
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Fig. 1: The overall workflow of AutoMR

Next, we extend the parameterization to inequality input

relations. Inequalities can be either greater than or less than

relations, as shown in the following equations:

Rinput : i
(j) > A(j)u, j = 2, 3 . . . h (3)

Rinput : i
(j) < A(j)u, j = 2, 3 . . . h (4)

Because we need to feed the program concrete inputs

to return outputs, we introduce an additive random matrix

to transfer the inequality relations to equality relations, as

shown in Equation 5. In the equation, ε is an additive matrix

containing randomly generated values. The elements of the

input are kept in their domains after adding the random values,

which is ensured by dynamically generating ε according to the

gaps between the elements and their domain boundaries.

Rinput : i
(j) = A(j)u+ ε, j = 2, 3 . . . h (5)

3) Output relation: We construct a vector o(1:h), which

consists of the elements of all the outputs from o(1) to

o(h): o(1:h) = (o(1) o(2) . . .o(h))T . With the assumption that

outputs comply with a l-degree polynomial relation, a vector

v is introduced here, which consists of all the polynomial

combinations of the elements of o(1:h) (e.g. Equation 15),

from 0-degree (the constant term) to l-degree (the highest-

degree term). We denote the number of elements of v by r,

where

r = 1 + hm+
(hm+ 2− 1)!

2!× (hm− 1)!
+ · · ·+ (hm+ l − 1)!

l!× (hm− 1)!
(6)

The output relation, Routput(o
(1),o(2) . . .o(h)), will hold if

we can find a matrix B so as to satisfy:

Bv = 0 (7)

It is worth noting that we denote an inferred MR as equality

if its left part is equal or close to 0 (e.g. the absolute value is

smaller than 0.05).
For inequality relations, Routput could be:

Routput : Bv > 0 (8)

Routput : Bv < 0 (9)

4) Combine the parameterized input and output relations:
After parameterizing the input and output relations, the process

of inferring MRs is transferred to the problem of finding pairs

of matrices A and B that satisfy both the input and output

relations. In this way, each pair of A and B describes an MR

of program P .

5) An Example: Consider a program under test P , which

calculates the sine value of a given number. Equations 10 and

11 are two MRs of P that we aim to discover.

MR1 : sin(2x)− 2sin(x)sin(π/2− x) = 0 (10)

MR2 : sin(x)− sin(2π + x) = 0 (11)

The process of identifying these MRs are as follows. As

there is only one element in each input, we can denote the base

input as x1. Based on the parameterization of input relations,

we assume the input relations can be denoted as:

u =
(
1 x1

)T
(12)

x2 = A(2)u (13)

x3 = A(3)u (14)

where A(2) and A(3) are (1×2) matrices that we aim to find.

For the output relation, the matrix v can be denoted as :

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
sin(x1)
sin(x2)
sin(x3)
sin2(x1)
sin2(x2)
sin3(x3)

sin(x1)sin(x2)
sin(x1)sin(x3)
sin(x2)sin(x3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

The output relation can be denoted as:

Bv = 0 (16)

where B is a (1× 10) matrix that we aim to find.

Based on the assumptions, the pairs of matrices A and B
actually describe MRs for program P . With the help of a

search method (to be described in Section III-B), we can find

pairs of appropriate matrices, such as:

MR1 : A(2) =
(
0 2

)
(17)

A(3) =
(
π/2 −1) (18)

B =
(
0 0 1 0 0 0 0 0 −2 0

)
(19)

MR2 : A(2) =
(
2π 1

)
(20)

B =
(
0 1 −1 0 0 0 0 0 0 0

)
(21)
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The above pairs of matrices A and B actually describe the

MRs shown in Equations 10 and 11.

B. Phase I: Search for matrices A and B
To find the matrices A and B that satisfy the relations,

we use a metaheuristic algorithm called Particle Swarm Op-

timization (PSO). PSO is a widely-used swarm intelligence

optimization algorithm [20], [21] and has been proven efficient

for discovering MRs [16]. In PSO, each candidate solution is

called a particle, and multiple particles coexist and optimize

cooperatively to search for the optimal solution. PSO is a

proper way of discovering MRs as in different runs it may

reach different optima, which represent different MRs of a

program.

In the search process, the essential part is the method to

evaluate a particle’s performance. We define different cost

functions for searching for equality and inequality MRs, as

shown in Equation 22. A collection of test inputs are randomly

generated to facilitate the evaluation of costs. In the equation,

s is the number of test inputs that are randomly generated.

For equality MRs, the cost of a particle,
∑s

z=1 |Bv(z)|, can

be regarded as its accumulated distances to zero for all test

inputs. For inequality MRs, q is the number of the passed test

inputs, so the cost of a particle is the proportion of failed test

inputs against it. The smaller of a particle’s cost, the nearer it

is to the optimal. The other parameters of PSO followed the

MRI paper [16].

cost(A,B) =

{
for equality MRs:

∑s
z=1 |Bv(z)|

for inequality MRs: 1− q
s

(22)

C. Phase II: Filter out the false MRs

In order to accelerate the search process, we use a small

number of test inputs for evaluating the cost function in Phase

I. To increase the reliability of identified MRs, in Phase II we

use another collection of test inputs to filter away the false

MRs produced in Phase I. The MRs that fail in this validation

are discarded. This filtering process was proven helpful to

increase the quality of the MRs [16]. Besides, we repeat the

filtering a number of times and the remaining MRs are passed

to Phase III.

D. Phase III: Remove redundant MRs

There exists redundancy in the discovered MRs. For ex-

ample, PSO may find the following three MRs for the sin
program: (1) sin(x) + sin(−x) ≈ 0, (2) sin(x) − sin(x +
6.28) ≈ 0 and (3) sin(−x) + sin(x + 6.28) ≈ 0. However,

the third MR is redundant because it can be inferred by the

combination of the first and the second. This phenomenon has

been observed in MRI’s results, in which only 2 out of 219

MRs are representative after manual checking [16].

The redundancy also exists in inequality MRs. For the

program log, after Phase II we might get these two MRs:

(1) if x2 > x1, log(x2) − log(x1) > 0 and (2) if x2 >
x1+2, log(x2)−log(x1)+1 > 0. The second MR is redundant

as it could be inferred from the first one.

After investigating the results from Phase II, we find that

for equality MRs most redundancy is related to their multi-

collinearity, whereas for inequality MRs it is related to the

strictness of the relations, as shown in above examples. To

remove the redundant MRs, we propose an algorithm that takes

advantage of matrix singular-value decomposition (SVD) and

constraint solving techniques (Figure 2).

Fig. 2: The workflow of Phase III

Similarity check. The first step is to remove the redun-

dant MRs that are highly similar. For example, due to the

inaccuracy of the search process, we observed two MRs:

(1) sin(x) − sin(x + 6.28) ≈ 0 and (2) 1.99sin(x) −
1.98sin(x + 6.28) ≈ 0. We deem that the second MR is

redundant of the first, though they are not exactly the same.

In order to handle this type of redundancy, we introduce a

metric to evaluate two parameterized MRs’ similarity. It is

a normalized Euclidean distance, shown in Equation 23. In

the equation, Mij denotes the element of ith row and jth

column of the matrix, rij denotes the searching range of Mij ,

n is the number of elements of M . The calculated distance

is in the range of [0, 1] and a smaller value indicates that the

two matrices are more similar. The distance will be 0 when

two matrices are exactly the same. The threshold to determine

the high-similarity can be user-defined and in our experiments

0.05 is adopted empirically.

distance(M (1),M (2)) =

√∑
i,j

(
M

(1)
ij −M

(2)
ij

rij

)2

n
(23)

Matrix SVD. For equality MRs, we employ the matrix SVD

technique to reduce the redundancy among MRs.

Firstly, we construct a matrix C in which each row rep-

resents an MR. In this way, the problem of obtaining the

representative MRs is transferred to finding a maximal linearly
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independent subset of the matrix C, in which each row will

represent an unique MR. Usually, the way of getting the

maximal linearly independent subset is to transfer the matrix

to its row echelon form. However, this method is helpless

due to the inaccuracy of the search results. To solve this

problem, we make use of the SVD method in our approach.

Firstly, we treat each MR (i.e., each row) as a feature and

the corresponding values as the data of the feature. In this

way, the problem of finding distinct MRs is further transferred

to reducing the number of features. The SVD method can

factorize the matrix C to the product of three matrices USVT

and S is a rectangular diagonal matrix with non-negative

numbers on the diagonal, known as the singular values. Next,

we can reconstruct the matrix to show the representative

MRs by discarding the trivial singular values. In AutoMR,

this algorithm is implemented based on a machine learning

package, scikit-learn [22].

For example, we might have the following MRs after Phase

II for a program P . x1, x2, x3 are three inputs that comply

with certain input relations:

(1) P (x1) + 0.99P (x2) ≈ 0
(2) P (x1) + 1.01P (x3) ≈ 0
(3) P (x2)− 1.03P (x3) ≈ 0
(4) 1.98P (x1) + 0.99P (x2) + 1.01P (x3) ≈ 0

It can be seen that these four MRs contain redundancy,

because (3) and (4) can be inferred from (1) and (2). As

described above, the matrix C for the three outputs P (x1),
P (x2), P (x3) will be:⎛

⎜⎜⎝
1 0.99 0
1 0 1.01
0 1 −1.03

1.98 0.99 1.01

⎞
⎟⎟⎠

After applying the SVD transformation, we can get the

following matrix:⎛
⎝ 2.433 1.198 1.252
−0.030 −1.235 1.238
−0.004 0.004 0.004

⎞
⎠

It can be computed that the singular values of the rows are

(2.99, 1.75, 0.01), which means that the first two rows contain

most information of the matrix. Therefore, we can remove the

redundancy and reconstruct the semantically equivalent MRs

using the first two rows:

(1) 2.433P (x1) + 1.198P (x2) + 1.252P (x3) ≈ 0
(2) −0.030P (x1)− 1.235P (x2) + 1.238P (x3) ≈ 0

Constraint Solving. For inequality output relations, due

to the reason that elementary row operations will not keep

the original inequality of the relation, we are not able to use

SVD to remove the redundancy. For example, the SVD method

cannot detect that log(x+1)− log(x)+1 > 0 is redundant to

log(x + 1) − log(x) > 0. To handle such cases, we integrate

Z3 [23] to check the strictness of the inequality relations.

Z3 is a SMT (Satisfiability Modulo Theories) based solver

which can check the satisfiability of user-provided formulas.

For any two MRs, we denote the input and output relations

as MR1: I1, O1 and MR2: I2, O2. The conditions we use

to check satisfiability are shown in Formula 24, i.e. MR2’s

input relation implies MR1’s input relation, and MR1’s output

relation implies MR2’s output relation. In brief, if MR1 has

a more lenient input relation and meanwhile a more stringent

output relation than MR2, we deem that MR2 is redundant to

MR1.

I2 =⇒ I1
O1 =⇒ O2

}
⇒ MR2 is redundant (24)

For example, consider the following two MRs: (1) if x2 >
x1, log(x2)−log(x1) > 0 and (2) if x2 > x1+1, log(x2)−
log(x1) + 1 > 0. To compare the strictness of the relations

using Z3, firstly we construct symbolic variables to represent

the inputs (x1 and x2) and outputs (y1, y2 for log(x1),
log(x2), respectively). Formula 25 and 26 show the statements

on which we employ Z3 to check the input and output

relations. We conclude that I1 (x2 > x1) is more lenient than

I2 (x2 > x1+1) and O1 (y2−y1 > 0) is more stringent than

O2 (y2−y1+1 > 0). Hence, we deem that MR2 is redundant

to MR1.

∀x1, x2 : x2 > x1 + 1 =⇒ x2 > x1 (25)

∀y1, y2 : y2− y1 > 0 =⇒ y2− y1 + 1 > 0 (26)

E. An Example

Suppose we have implemented a program P , which eval-

uates the sin value (output) for a given input. In order to

obtain MRs, we may use an existing MR inference technique

such as MRI [16]. However, due to the limitations of MRI,

only two certain types of MRs can be obtained and the

results contain quite a number of redundant MRs, as shown in

Table I. The MRs in bold font are the representative ones,

such as (a) P (x) − P (x + 2π) = 0, (c) P (x) + P (x +
π) = 0 and (g) (P (x))2 + (P (−x + π/2))2 − 1 = 0.

Because of the inaccuracy of the search results, redundant

MRs such as (b) 2.05P (x) − 1.98P (x + 2π) = 0 and

(h) 2.03(P (x))2 + 1.98(P (−x+ π/2))2 − 1.95 = 0 are also

found. MR (f) P (x+ π) + P (x+ 2π) = 0 is also a kind of

redundancy, because it can be derived by the combination of

(a) and (b). A false MR, (e) P (x) − P (x − 2) − 1.5 = 0,

might also be discovered, though it will be filtered out in the

following filtering phase.

AutoMR can infer more kinds of MRs and alleviate the pain

to obtain the representative MRs. As shown in Table I, the in-

ferred MRs (a) to (h) are the same as MRI. However, AutoMR

can also infer MRs (i) to (p), which cannot be discovered by

MRI. Among them, MR (i) P (x) +P (x+2)− 2.05 < 0 and

(m) P (x) + P (x − 3) + 2.05 > 0 are inequality relations.

MR (o) P (2x) − 2P (x)P (π/2 − x) = 0 involves three

inputs, and MR (p) P (3x) − 3P (x) + 4(P (x))3 = 0 is a

cubic polynomial relation. Actually, the user could set arbitrary

degrees to the input and output relations for the MRs to be

239



TABLE I: Example MRs of sin inferred by MRI and AutoMR 
Approach Phase I:  

Inferred MRs 
Phase II:  
MRs after filtering 

Phase III:  
MRs after removing redundancy 

MRI 
(a) P(x) – P(x + 2 ) = 0 (b) 2.05P(x) – 1.98P(x + 2 ) = 0 
(c) P(x) + P(x + ) = 0 (d) 1.45P(x) + 1.47P(x + ) = 0 (e) P(x) + P(x–2) – 1.5 = 0 (f) P(x + ) + P(x + 2 ) = 0 
(g) (P(x))2 + (P(–x + /2))2 – 1 = 0 (h) 2.03(P(x))2 + 1.98(P(–x + /2))2 – 1.95 = 0 … 

(a) P(x) – P(x + 2 ) = 0 (b) 2.05P(x) – 1.98P(x + 2 ) = 0 
(c) P(x) + P(x + ) = 0 (d) 1.45P(x) + 1.47P(x + ) = 0 (f) P(x + ) + P(x + 2 ) = 0 
(g) (P(x))2 + (P(–x + /2))2 – 1 = 0 (h) 2.03(P(x))2 + 1.98(P(–x + /2))2 – 1.95 = 0 … 

Not Supported 

AutoMR 
(a) ~ (h): Same as MRI’s  
 
(i) P(x) + P(x + 2) – 2.05 < 0 (j) P(x) + P(x + 2) – 3 < 0 (k) P(x) + P(x + 5) –  1.5 > 0  (l) P(x)  + P(x + 5) – 1 > 0 
(m) P(x) + P(x – 3) + 2.05 > 0 (n) P(x) + P(x – 3) + 2.3 > 0 
(o) P(2x) – 2P(x)P( /2 – x) = 0 
(p) P(3x) – 3P(x) + 4(P(x))3 = 0 … 

(a)(b)(c)(d)(f)(g)(h): Same as MRI’s 
 
(i) P(x) + P(x + 2) – 2.05 < 0 (j) P(x) + P(x + 2) – 3 < 0 
(m) P(x) + P(x – 3) + 2.05 > 0 (n) P(x) + P(x – 3) + 2.3 > 0 
(o) P(2x) – 2P(x)P( /2 – x) = 0 
(p) P(3x) – 3P(x) + 4(P(x))3 = 0 … 

(a) P(x) – P(x + 2 ) = 0 
(c) P(x) + P(x + ) = 0 
(g) (P(x))2 + (P(–x + /2))2 – 1 = 0 
 
(i) P(x) + P(x + 2) – 2.05 < 0 
(m) P(x) + P(x – 3) + 2.05 > 0 
(o) P(2x) – 2P(x)P( /2 – x) = 0 
(p) P(3x) – 3P(x) + 4(P(x))3 = 0 … 

* MRs in bold indicate that they are not redundant.  * Value close to 3.14 is denoted as . A relation is regarded as equality left part of the formula is less than a small value, i.e. 0.05 in this table. 
inferred. Moreover, in Phase III, the redundant MRs such as

(b)(d)(h)(f) will be filtered out so that a much smaller set of

high-quality MRs can be obtained.

IV. EXPERIMENTAL DESIGN

A. Research Questions

RQ1: Is AutoMR able to identify equality and inequality
MRs?

AutoMR is designed to be a general technique that can han-

dle an arbitrary degree of equality and inequality polynomial

MRs. The first RQ is to evaluate its effectiveness in identifying

MRs of some real-world numerical programs. Besides, we

also evaluate AutoMR’s ability to remove redundancy for both

equality and inequality MRs.

RQ2: Can the discovered MRs be used to detect program
faults? MRs contain behavioral properties of the program, so

we propose the second RQ to investigate whether they can be

used to reveal program faults. Because the MRs are reverse

engineered from the program, they will be more useful to

detect faults introduced by program changes (e.g., in regres-

sion testing, mutation testing) or by different implementations

(e.g., in differential testing). In this RQ we conduct mutation

testing and differential testing experiments to evaluate the

fault-detection ability of the inferred MRs.

B. Subject Programs

To evaluate the proposed approach, we applied AutoMR on

8 programs from Apache Commons Math 2.2 and 29 programs

from NumPy 1.14. Apache Commons Math [19] and NumPy

[18] are commonly used math libraries for Java and Python.

The list of the programs is shown in Table II. The collection

comprises several types of programs, including unary-variate

input and output programs such as sin and log1p, multiple-

variates input and/or output programs such as hypot and sort.
The 8 Apache programs were also used in related work [16]

so we could conduct a comparative study. To systematically

evaluate the MRs’ ability to detect faults, we applied the MRs

on 8 Apache programs’ 625 mutants, which were also used

for evaluating MRI [16]. Each mutant, which is the result of

applying a mutation operator to the source code, is viewed as

a faulty program in our study.

TABLE II: Subject Programs

Apache Com-
mons Math 2.2

NumPy 1.14

abs, asinh, atan,
cos, log1p,
log10, sin, tan

array equal, dot, abs, arccos, arccosh,
arcsin, arcsinh, arctan, arctanh, ceil,
arctan2, cos, cosh, hypot, exp, floor,
amax, log, log1p, amin, log10, round,
sin, sinh, sqrt, tan, tanh, power, sort

C. Experiment Settings

1) RQ1: We used our approach to infer MRs for 29 pro-

grams from NumPy and 8 programs from Apache Commons

Math. To facilitate the comparison with the state-of-the-art

tool, we adopted the same search parameters as in [16]. For

each of the subject programs, PSO was run 500 times with

the maximum iterations of 350 for each type of MRs. For

each run of the PSO, the population of the test inputs was

100. The number of the initial particles was set to 20, and

the input domain of the programs was set between 0 and

20. The searching boundaries of the coefficients were set as

-10 to 10 for constant terms, -2 to 2 for non-constant terms.

After obtaining the MRs from the PSO runs, we applied the

filtering process to filter out the false MRs. That was done by

testing the MRs with 100 randomly generated test inputs and

repeating 100 times.

2) RQ2: In this RQ, mutation testing and differential testing

strategies were employed to evaluate the fault-detection ability

of the inferred MRs. Mutation testing is to seed bugs to the

original program to generate a large corpus of faulty programs
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(mutants) that can be used for systematically evaluating a

test set’s fault-detection ability [24]. Differential testing is

to compare the executions of similar programs (or different

implementations of the same specification) and observe the

differences [17]. In our experiment, MRs inferred from the 8

Apache programs were used to generate test cases to test their

625 mutants (mutation testing). Besides, MRs inferred from

the NumPy programs which have the same specifications as

the 8 Apache programs were also used to test the mutants (dif-

ferential testing). If an MR generated test cases that detected

a mutant while passed the original program, a true detection

was recorded. But if an MR killed both the mutant and the

original program, a false detection was recorded. Besides the

test cases generated from the MRs, we also directly used the

test inputs together with the corresponding outputs (i.e., the

concrete test cases) from Phase I to detect the mutants.

V. EXPERIMENTAL RESULTS

A. RQ1: Inference of various types of MRs

Table III presents the numbers of various types of MRs in-

ferred by our approach. The results are categorized into 8 types

according to the properties of their input and output relations.

We can see from the table that for each type our approach

managed to infer a number of MRs. For the studied programs,

the average number of discovered MRs ranges from 4 to 409.

By manually checking some of the results, we find that the

results reveal some important properties of the programs. For

example, AutoMR discovered that sin(x+ 2π)− sin(x) = 0
and sin(−x) + sin(x) = 0, which shows that sin is a

periodical and odd function.

Type I and II are the two types of MRs supported by

MRI, the approach proposed in [16]. For the 8 programs from

Apache Commons Math, we compared the numbers of Type

I and II MRs inferred by AutoMR and MRI, shown in the

last two columns of Table III. For the 8 programs, on average

MRI obtained 107 Type I and 37 Type II MRs. Comparatively,

after removing the redundancy, AutoMR only obtained 6 and

11 MRs. Though fewer MRs were obtained, we observed that

Type I and II MRs inferred by our approach could detect more

faults than the ones inferred by MRI (shown in Figure 3).

Such results indicate that the MRs inferred by MRI contained

a lot of duplicates which did not contribute to the detection

of program faults.

The higher mutant killing rate of MRs inferred by AutoMR

can be explained by its novel cost function in Phase I. While

for equality MRs MRI sets criteria and counts the number

of passed test inputs, in our approach AutoMR evaluates a

particle’s cost by summing all test inputs’ distance to zero.

When trying MRI’s cost function in our experiment, we found

that during the PSO iterations there may exist more than one

candidates that possessed the same cost. In such a situation

MRI has to select one of them as the global best and thus

may miss the true best direction of the search process. In our

approach the total distance for different particles could rarely

be the same. Therefore, at each moment there would be only

one global best particle. Compared with the cost function of

Fig. 3: Comparison of AutoMR and MRI on inferring Type I

and II MRs

MRI, the optimal solution is more likely to be reached at the

end of our search process.

In this RQ, we also investigate the ability of AutoMR

to remove redundancy. Table IV presents the redundancy

removal rates for equality and inequality MRs of the 8 Apache

programs. On average, AutoMR removed 19.7% and 75.0%

redundant MRs for inequality and equality MRs respectively.

We also applied the redundancy removal process on the

two types of MRs inferred by MRI in [16] and managed

to remove a significant amount of redundancy. On the one

hand, the redundancy removal rates indicate the existence of

redundant MRs in the search results, which was observed but

not addressed in [16]. On the other hand, the results show the

effectiveness of our redundancy removal algorithm. Compared

to redundancy removal by a human [16], we take advantages

of constraint solving technique and matrix properties to save

manual efforts.

B. RQ2: Fault-detection capacity of the inferred MRs

Table V summarizes the numbers of the mutants (faulty

programs) killed by the MRs inferred from the original (unmu-

tated) Apache programs. It can be seen that the inferred MRs

successfully detected a number of faults and did not report any

false detections. The highest killing rate happened on tan, for

which 88.9% of the faults were detected. The lowest detection

rate was on asinh, the inferred MRs still detected 23.6% of the

faults. The average mutant killing rate for the 8 programs was

50.6%, suggesting that the inferred MRs can record behavioral

properties of the original programs and can be used in software

testing.

Furthermore, to evaluate the effectiveness of MRs in dif-

ferential testing [17], we tested the mutated Apache programs

using the MRs inferred from the NumPy programs that have

the same specifications. On average, the fault detection rate

was 51.3% and the number of false detection was 0, indicating

that the MRs inferred from NumPy still hold for the corre-

sponding implementations in Apache. We can also see from

Table V that the fault detection rates of MRs inferred from

NumPy were similar to the ones from Apache. The reason is

that the programs from these two packages possess the same

specifications.
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TABLE III: MR inference results 
Type Input 

relation 
Output 

relation 
# of 

inputs 

Degree 
of input 
relation 

Degree of 
output 

relation 
Example* 

Avg. # of MRs 

29 NumPy 
programs 8 Apache programs  

AutoMR AutoMR MRI I equality equality 2 1 1 x2 = x1 + ;  sin(x2) + sin(x1) = 0 18 6 107 II equality equality 2 1 2 x2 = 2x1 – ;  cos(x2) + 2cos2(x1) – 1 = 0 16 11 37 
III equality equality 2 1 3 

x2 = 0.5x1 + 2.25 ;  2.4sin(x1) – 0.98sin(x2) + 1.63sin2(x1) – 1.01sin(x1)sin(x2) – 1.43sin2(x2) – 0.07sin3(x1) + 0.05sin2(x1)sin(x2) –3.27sin(x1)sin2(x2) + 1.95sin3(x2) + 0.71 = 0 
11 7 

Not Supported 
IV equality equality 3 1 1 x2 = x1 + 3  and x3 = x1 – 3 ;  cos(x1) – 0.5cos(x2) – 0.5cos(x3) = 0 115 80 
V equality equality 3 1 2 x2 = 2x1 + 0.5  and x3 = –x1 – 3 ;  –0.3sin(x1) – 0.5sin(x2) + 0.3sin(x3) – 0.6sin2(x1) + 1.2sin(x1)sin(x2) + 0.3sin(x1)sin(x3) –1.2sin(x2)sin(x3) – 0.7sin2(x3) + 0.5 = 0 57 61 
VI inequality equality 2 1 1 x2 > 2x1 + 3.82;  0.08atan(x1) – 1.54atan(x2) + 2.25 = 0 11 4 VII equality inequality 2 1 1 x2 = 1.37x1 + 6.97; 1.35cos(x1) + 1.49cos(x2) – 4.45 < 0 409 349 VIII inequality inequality 2 1 1 x2 > 1.24x1 + 6.13; –1.36floor(x1) + 1.79floor(x2) – 0.11 > 0 386 395 * Value close to 3.14 is denoted as . A relation is regarded as equality left part of the formula is always less than a small value, i.e. 0.05 in this table. 

TABLE IV: Effectiveness of removing redundancy

Compared with MRI, we observed that more types of MRs

could enhance the fault detection capacity, as shown in Figure

4. It can be seen that the MRs inferred by AutoMR can detect

many more faults than those inferred by MRI. For example,

among the 197 faulty versions of asinh, MRs inferred by

AutoMR can successfully detect 23.6% of them, whereas

only 0.3% were detected by the MRs inferred by MRI. This

improvement could be attributed to the various types of MRs.

AutoMR could infer not only MRs supported by MRI, but also

other complex equality as well as inequality MRs. The results

suggest that it is not the quantity but the diversity of MRs that

contributes more to the fault detection ability. The importance

of the MRs’ diversity was also highlighted by Liu et al. [4].

They applied MRs to verify the correctness of a program and

found that using more diverse MRs could enhance the cost-

effectiveness of metamorphic testing.

Figure 5 shows the numbers of faulty programs that were

detected using MRs and the concrete test cases that were used

Fig. 4: Fault detection capacity of AutoMR and MRI

to evaluate the MRs in Phase I. It can be seen that MRs

inferred by AutoMR could detect nearly two times as many

as bugs detected by the concrete test cases. The reason is that

during the process of inferring MRs, the cost function guides
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TABLE V: Detection of seeded faults using inferred MRs

Program 
# of 

seeded 
faults 

Detected by MRs from Apache 
Detected by 
MRs from 

NumPy 
# TD 

by 
Type 

I 

# TD 
by 

Type 
II 

# TD 
by 

Type 
III 

# TD 
by 

Type 
IV 

# TD 
by 

Type 
V 

# TD 
by 

Type 
VI 

# TD 
by 

Type 
VII 

# TD 
by 

Type 
VIII 

# TD 
by  
All 

Types 

Total TD 
rate 

Total TD 
rate 

abs 14 10 10 10 10 10 10 10 10 10 71.4% 71.4% 
asinh 297 1 1 1 3 1 64 1 5 70 23.6% 25.3% 
atan 188 70 66 70 76 66 84 54 56 96 51.1% 51.1% 
cos 38 16 16 0 16 16 0 16 16 16 42.1% 42.1% 

log1p 230 54 0 0 54 56 88 52 58 92 40.0% 39.1% 
log10 116 8 8 8 8 8 36 8 12 40 34.5% 22.4% 
sin 34 18 18 18 18 18 0 18 18 18 52.9% 58.8% 
tan 36 16 16 0 16 16 0 16 30 32 88.9% 100.0% 

 
* False Detection was not observed for all programs.  
* TD denotes True Detection, i.e. the original program passed but the mutant was killed. 

the program under test to execute repetitively to reduce the

cost. Consequently, the inferred MRs contain more behavioral

information than the original test cases. As a comparison, the

MRs inferred by MRI killed less mutants than the concrete

test cases, which indicated that part of the information in the

test cases was missing.

Fig. 5: Number of faults detected by three approaches (total

number of faults is 625). (i) detected by concrete test cases.

(ii) MRI: detected by MRs inferred by MRI. (iii) AutoMR:

detected by MRs inferred by AutoMR.

Table VI compares the performance of AutoMR and MRI on

MR inference and bug detection. Despite the fact that the MRs

inferred by AutoMR could detect nearly four times as many

bugs as MRI, AutoMR spent slightly more time than MRI. On

average, MRI needed 3.9s to infer an MR and detect a bug

while AutoMR needed 4.7s. This discrepancy might be ex-

plained by two reasons: firstly, AutoMR infers more complex

relations such as the cubic degree MRs. Secondly, AutoMR

has an additive cleansing phase to remove the redundant

MRs. Nevertheless, considering the significantly increased

fault-detection ability, we believe the extra consumed time is

worthwhile.

TABLE VI: Performance of MR inference and bug detection

Performance AutoMR MRI # of faults detected by MRs 374 94 Avg. time consumed for obtaining one MR and detecting one fault (seconds) 4.7 3.9 
VI. DISCUSSIONS

A. Discussion of Results

From the experimental results, it can be seen that the

inferred MRs are able to represent program properties and

reveal faulty behaviors. However, although PSO could find

some solutions to our problem, it cannot ensure to find all

solutions and sometimes returns duplicates. Therefore, in our

experiments we repeated PSO a number of times to find

as many distinct results as possible. Previously, Zhang et

al. [16] tried to manually identify the representative MRs

from hundreds of search results. Compared to their approach,

we automate this process by integrating constraint solving

technique and matrix properties.

Although effective, AutoMR cannot detect all faults, as

shown in the experiment results (Table V). The reason why

some faults failed to be detected could be that the collection of

inferred MRs was incomplete. As Chen et al. pointed out [6],

MRs are necessary properties of the target algorithm, and there

are usually a huge number of these properties. For example,

new MRs could be obtained by increasing the number of

involved inputs and the degree of relations. In our future work,

we will explore more effective techniques to discover more

MRs.

To our knowledge, the proposed tool has the following

applications:

• Facilitate regression testing. In software maintenance and

evolution, the MRs inferred from a certain version can be

used to ensure that a new version still works. Some subtle

faults might not be identified by the programmers but can

be tracked by the inferred MRs.
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• Facilitate differential testing. MRs could be inferred from

one program and used to test its alternative implementa-

tions. This is a strategy of differential testing [17].

• Facilitate program understanding. The discovered MRs

can be used to help understand the programs whose

source code are not available. For example, without

knowing the source code, AutoMR succeeded to discover

some MRs that revealed the periodicity (sin(x)−sin(x+
2π) = 0) and oddness (sin(x) + sin(−x) = 0) of the

sin program.

B. Threats to Validity

We have identified the following threats to validities:

• Subjects: In this study, we use a collection of 37 nu-

merical programs. Although these programs are from

two math packages (NumPy, Apache Commons Math)

implemented in three different languages (C, Python and

Java), the number of subject programs is still relatively

small. In our future work, we will experiment with more

programs to further evaluate the effectiveness of our

approach.

• Numerical programs only: in this paper we only studied

numerical MRs. There are other metamorphic relations

among categorical values, strings, and objects, which will

be investigated in our future work. However, we would

like to stress that numerical software provides the foun-

dation for a wide variety of scientific and safety-critical

systems and their failures have catastrophic consequences

[25].

• Accuracy: In our experiments on detecting faults using

MRs returned by AutoMR, no false detection (false

alarm) was detected. However, our approach still failed to

detect some seeded faults (Table V). We have discussed

the possible reasons in Section VI-A. We will improve

the proposed approach in our future work.

• Validity of MRs: As our MRs are inferred from programs,

they are actually reverse engineered invariants [26]. Ac-

cordingly, the MRs can only guarantee that they comply

with the implementation, not necessarily the specification.

So they will be more useful in regression testing or dif-

ferential testing. Furthermore, many MRs are readable to

a human so they could improve program understanding.

For the MRs that are difficult to understand by a human

(e.g. Type III in Table III), they are still useful to increase

the number of test cases.

VII. RELATED WORK

Many studies explore invariants in programs and find them

useful in software maintenance [26], fault detection [27], [28],

and fault localization [29]. A metamorphic relations is also a

kind of invariant between multiple program inputs and outputs.

Metamorphic relations are at the core of metamorphic

testing. Constructing metamorphic relations manually tends to

be a tedious process and requires thorough knowledge about

the program under test. In recent years, many studies have been

conducted to automatically or semi-automatically construct

metamorphic relations [13], [14], [16], [30]–[35]. For example,

Liu et al. [32] proposed to construct metamorphic relations by

combining existing metamorphic relations. The core idea is

to identify composable metamorphic relations, which depends

on manual identification. Carzaniga et al. [33] proposed to

generate test oracles by analyzing the redundancy in a program

under test. Such redundancy can help construct metamorphic

relations by replacing some operations in a test with redundant

operations. Here they need to manually identify redundancy in

a program. Kanewala and Bieman [14], [34] utilized machine

learning techniques to predict whether metamorphic relations

exist for a program in a set of predefined relations. Here

they mainly used the control flow graph information of a

method. Su et al. [35] proposed to dynamically infer likely

metamorphic relations by searching a collection of predefined

metamorphic relations. Zhang et al. [16] proposed a search-

based metamorphic relation construction approach (MRI),

which automatically infers two types of polynomial relations.

In this paper, we propose AutoMR, an automatic meta-

morphic relation construction approach. The most related

work is MRI [16], since AutoMR also utilizes a search-based

technique to infer polynomial metamorphic relations. Search-

based software testing uses metaheuristic algorithms (e.g.

genetic algorithm, hill climbing algorithm, PSO) to address

software testing problems such as test case generation, selec-

tion, and prioritization [36]–[39], whereas our approach aims

to discover MRs using metaheuristic algorithm. Compared

with MRI, AutoMR addresses the limitations in the number

of inputs, the degree of relations and equality relations. That

is, AutoMR is a general approach to inferring polynomial

relations involving equality and inequality relations, multiple-

variates inputs and outputs. In particular, AutoMR utilizes

matrix singular-value decomposition and constraint solving

techniques to reduce redundant relations, while MRI does not

deal with redundancy automatically.

VIII. CONCLUSION

In this paper, we propose AutoMR, a technique for au-

tomatically inferring and cleansing Metamorphic Relations

(MRs). AutoMR can infer both equality and inequality MRs,

and MRs of linear, quadratic, and even higher degrees. We

have applied our approach to 37 numerical programs and

evaluated the fault-detection capacity of the inferred MRs.

The result shows that AutoMR can effectively infer various

types of MRs and outperforms the state-of-the-art approach.

Moreover, the inferred MRs have been successfully used

to detect faults in mutation testing and differential testing

experiments. Our experimental tool and data are available at

https://github.com/bozhang213/AutoMR.git.
In the future, we will extend the proposed approach to sup-

port more types of MRs such as logical and categorical MRs.

We will also investigate MR-based automatic bug detection

and program repair.
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