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Abstract Software crashes are severe manifestations of software bugs. Debugging crashing
bugs is tedious and time-consuming. Understanding software changes that induce a crashing
bug can provide useful contextual information for bug fixing and is highly demanded by
developers. Locating the bug inducing changes is also useful for automatic program repair,
since it narrows down the root causes and reduces the search space of bug fix location.
However, currently there are no systematic studies on locating the software changes to a
source code repository that induce a crashing bug reflected by a bucket of crash reports.
To tackle this problem, we first conducted an empirical study on characterizing the bug
inducing changes for crashing bugs (denoted as crash-inducing changes). We also propose
ChangeLocator, a method to automatically locate crash-inducing changes for a given bucket
of crash reports. We base our approach on a learning model that uses features originated
from our empirical study and train the model using the data from the historical fixed crashes.
We evaluated ChangeLocator with six release versions of Netbeans project. The results
show that it can locate the crash-inducing changes for 44.7%, 68.5%, and 74.5% of the
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bugs by examining only top 1, 5 and 10 changes in the recommended list, respectively. It
significantly outperforms the existing state-of-the-art approach.

Keywords Crash-inducing change · Software crash · Crash stack · Bug localization

1 Introduction

Software crashes are usually considered as severe bugs. They cause unintended program
behaviour, bad user experiences, or even disasters for safe-critical systems. Various crash
reporting systems such as Windows Error Reporting (Glerum et al. 2009), Apple Crash
Reporter (Technical note tn2123: Crashreporter 2015), Mozilla Crash Reports (Mozilla
crash reports 2015) and Netbeans Exception Reports (Netbeans exception reports 2015),
have been developed and deployed. These systems (Technical note tn2123: Crashreporter
2015; Glerum et al. 2009; Mozilla crash reports 2015; Netbeans exception reports 2015)
automatically collect crash reports from end users and group similar crash reports into
buckets, which are proved to be useful for prioritizing debugging effort (Glerum et al.
2009). However, automatic debugging for crashing bugs is not supported by existing crash
reporting systems.

Over the years, various bug localization techniques have been proposed to help develop-
ers debug (e.g., Abreu et al. 2007: Jones et al. 2002; Liblit et al. 2003; Saha et al. 2013; Ye et
al. 2014; Zhou et al. 2012; Wong et al. 2014). These techniques rank suspicious statements
or modules based on execution traces or bug reports. Although these techniques could be
useful in some situations, their effectiveness is largely unsatisfactory in practice and they
are rarely used by developers (Parnin and Orso 2011). One reason is that locating buggy
statements or modules in isolation may not provide adequate information for developers to
understand the bugs (Parnin and Orso 2011).

Our previous study (Wen et al. 2016) found that, in order to understand and fix a bug,
developers often refer to the bug inducing changes (i.e., the commits that initially introduce
the bug) in the discussion of bug reports. In our investigation, we found that 1,851 bug
reports (Bug report list 2015) about crashes in Mozilla include developers’ discussion on
bug inducing changes made to the repository. Developers extensively discussed “regression
range” (i.e., the last known good revision to the first known bad revision) (Regression range
2015) in bug reports. We sampled some developers’ discussions and their desire to learn
about bug inducing changes as follows.

“given the regression range (for which I’m most grateful) ...1

Finding a regression range to find the change that busted it could be useful.2

Alternatively, you could check if you can reproduce on some of the older (archived)
UX builds and/or otherwise get an idea of the regression range.3

And to be useful, the range (of course) needs to be narrow ... In my experience, given
that narrow a regression range, it’s often possible to guess which patch triggered a

1https://bugzilla.mozilla.org/show bug.cgi?id=448608
2https://bugzilla.mozilla.org/show bug.cgi?id=589191
3https://bugzilla.mozilla.org/show bug.cgi?id=941044

https://bugzilla.mozilla.org/show_bug.cgi?id=448608
https://bugzilla.mozilla.org/show_bug.cgi?id=589191
https://bugzilla.mozilla.org/show_bug.cgi?id=941044
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problem. Then I could do a test build with that patch backed out, and ask you guys to
test it.4

... help in narrowing down the regression range and finding the right prod-
uct/component is appreciated”.5

Based on our investigation of developers’ discussions and source code repository, we
summarize four major benefits that developers can derive from understanding bug inducing
changes. First, since a bug inducing change records the developer who committed it, it
facilitates the triage of the bug to the developer who is familiar with the corresponding code.
As shown in Fig. 1, the bug was fixed by the developer Vladimir Kvashin who was also the
committer of the bug inducing changes. Our previous study (Wen et al. 2016) confirmed
that 77.86% of the bugs were fixed by the committer of the bug inducing changes. Second,
the modified code in the bug inducing changes provides the contextual clues that can help
explain and fix the bugs. Take the bug #244574 as an example. This bug is an NullPointer
Exception (Fig. 1a), and it crashes at Line 317 as shown in Fig. 1b. This crash is due to
the null value of p.second(). From the bug inducing change, we can get the clue why
p.second() is null. At Line 449, the return value is an object of Pair class whose field
second is assigned with the null value. At Line 425, the object cur can be assigned with
an object of Pair class which is returned from Line 449 (dotted line 1). The variable cur
then can be assigned to another object result in the method getEnv at Line 428 (dotted
line 2), and then result is returned (dotted line 3). At Line 315, the object p is assigned
with the return value of the method getEnv and then used at Line 317 (dotted line 4).
By examining the bug inducing code, we can understand how a null value is propagated
to the variable used in crash point. Moreover, in Fig. 1c, the bug-fixing code at Line 317
and 319 is semantically equivalent to the deleted code before Line 315 in the bug inducing
change, which indicates that developers can get hints of how to write the bug-fixing patch
from the bug inducing change. Third, reverting bug inducing changes is one of the ways that
developers resolve the bugs. In our investigation of NetBeans project, there are more than
1,069 bug inducing changes that were reverted for fixing bugs in the source code repository.
Furthermore, the ability to locate the bug inducing changes is also beneficial for automatic
program repair techniques (e.g., Le Goues et al. 2012; Arcuri and Yao 2008; Weimer et
al. 2010 ), since it narrows down the root causes and reduces the search space of bug fix
location.

Although bug inducing changes are important to program debugging in practice, there
are no systematic studies on how to locate these changes for the bugs discovered in the field.
One relevant study is delta debugging (Zeller 1999), which intensively runs the test cases
on the different combination of changes and locates the bug introducing changes. Similar
to spectrum-based bug localization techniques, this technique assumes the availability of
failing test cases, which is not generally valid for the bugs happened in the field. The other
relevant studies (Kamei et al. 2013; Kim et al. 2008; An and Khomh 2015; An et al. 2017)
are to predict whether a committed change is buggy. However, these techniques cannot
distinguish which bug a buggy-prone change is blamed for, and developers may not know
what to do without actionable information.

4https://bugzilla.mozilla.org/show bug.cgi?id=400291
5https://bugzilla.mozilla.org/show bug.cgi?id=446630

https://bugzilla.mozilla.org/show_bug.cgi?id=400291
https://bugzilla.mozilla.org/show_bug.cgi?id=446630
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Bug: #244574

User:Exception Reporter

Reported Date: May 18 18:16 2014 UTC

Description: NullPointerException at org.netbeans.modules.cnd.makeproject.ui.
RemoteSyncActions$BaseAction.enable

(a) Bug #244574

changeset:e10374c2df360

user:Vladimir Kvashin

date: Fri Feb 28 14:56:50 2014

summary: additional fix for #242416 Hide “upload to” action in the case remote host 
uses “System-level-file-sharing”

- ExecutionEnvironment execEnv = getEnv(activatedNodes);
- If (execEnv != null && execEnv.isRemote()) {
- enabled = ServerList.get(execEnv).getSyncFactory().isCopying();

315 +  Pair p <ExecutionEnvironment, RemoteSyncFactory> = getEnv(activatedNodes);
316 + if(p != null && p.first()!= null&& p.first().isRemote()){
317 +  enabled = p.second().isCopying();
318  } else {
319 enabled = false;
320   }

421 +  private static Pair<ExecutionEnvironment,
RemoteSyncFactory> getEnv(Node[] activatedNodes) {

422 + Pair<ExecutionEnvironment, RemoteSyncFactory> result = null;

425 + Pair<ExecutionEnvironment, RemoteSyncFactory> curr = getEnv(project);
426 + if (curr != null) {
427         if (result == null) {

- result = env;
428 +   result = curr;
429  }
437 return result;
438  }
439 +  private static Pair<ExecutionEnvironment,RemoteSyncFactory> getEnv(Project 

project) {

449 + return Pair.of(ServerList.getDefaultRecord().getExecutionEnvironment(),null);
450  } 

(b) Bug Inducing Change for Bug #244574

changeset:65f38533c2ea

user:Vladimir Kvashin

date: Tue May 20 17:42:33 2014

summary:fixed #244574–NullPointerExcetion at org.netbeans.
modules.cnd.makeproject.ui.RemoteSyncActions$BaseAction.
enable

315 Pair p<ExecutionEnvironment, RemoteSyncFactory> = getEnv(activatedNodes);
316 if(p != null && p.first() != null && p.first().isRemote()){

- enabled = p.second().isCopying();
317 + RemoteSyncFactory sync = p.second();
318 + if (sync == null) {
319 + sync=ServerList.get(p.first()).getSyncFactory();
320 +   }
321 +   enabled = (sync == null)?false:sync.isCopying();
322 } else {
323   enabled = false;
324 }

Class: Pair

public final class Pair<First,Second> {
private First first;
private Second second;
private Pair(First first, Second second) {

this.first = first;
this.second = second;

}
public First first() {

return first;
}
public Second second() {

return second;
}
public static Pair of (First first, Second second) {

return new Pair<First, Second>(first, second);
}

}

(c) Bug-Fixing Change for Bug #244574

(d) Class Pair

4

1

2

3

Crashing line

Fig. 1 An example of bug inducing and fixing change in NetBeans



2870 Empir Software Eng (2018) 23:2866–2900

In this paper, we target at locating the bug inducing changes for a specific type of bugs –
crashing bugs, given only buckets of crash reports. We denote the target changes as crash-
inducing changes. We select crash-inducing change which is at the commit level as the
target, because commits are the units frequently used by developers in the bug reports. To
understand crash-inducing changes, we conduct an empirical study on the characteristics
of crash-inducing changes on the popular and widely used open source project NetBeans.
Based on that, we propose ChangeLocator, a novel technique for locating crash-inducing
changes given only buckets of crash reports. Our approach is based on a learning model
that uses features originated from our empirical study and is trained by the historical fixed
buckets. To evaluate ChangeLocator, we conduct an experimental study using more data
from NetBeans projects. The evaluation results are promising: using ChangeLocator, we can
locate 44.7%, 68.5%, and 74.5% of crash buckets by examining only top 1, 5 and 10 changes
in the ranked list. Besides, ChangeLocator significantly outperforms the state-of-the-art,
IR-based bug localization approach Locus (Wen et al. 2016).

In summary, the main contributions of this paper are as follows:

– We conducted an empirical study on characterizing the crash-inducing changes, and
proposed a novel technique to locate the crash-inducing changes based on buckets of
crash reports. To the best of our knowledge, it is the first study on locating the crash-
inducing changes based on buckets of crash reports.

– We implemented our technique as the tool ChangeLocator and evaluated it using six
release versions of NetBeans, a popular, large-scale and open source system.

The remainder of this paper is organized as follows. First, we briefly introduce the back-
ground information in Section 2. Section 3 presents our empirical study on crash-inducing
changes. Based on the results of the study, we propose our technique in Section 4. Section 5
presents our experimental design and Section 6 shows our evaluation results. We discuss
issues involved in our approach in Section 7 and the threats to validity in Section 8. We
survey the related work in Section 9. Finally, Section 10 concludes this paper.

2 Background

2.1 Crash Reporting System

Software crashes are one of the most severe manifestations of software bugs. Due to their
severity, software crashes are often to be fixed at a high priority. Since the crash information
in the field is useful for debugging, many crash reporting systems such as Windows Error
Reporting (Glerum et al. 2009), Apple Crash Reporter (Technical note tn2123: Crashre-
porter 2015), Mozilla Crash Reports (Mozilla crash reports 2015) and Netbeans Exception
Reports (Netbeans exception reports 2015) have been developed and deployed. Once a crash
happens in the deployment site, a crash report capturing crash related information (includ-
ing crash stack, build id, component name, version, operation system and so on) is generated
and sent to crash reporting system. Among all the crash related information, one of most
important information is crash stack. Figure 2 gives an example of a crash stack trace in
NetBeans (Exception ID: 2793). A crash stack trace is composed of several frames, with
the most recently executed frame at the top and the least recently executed at the bottom.
Each frame contains a full-qualified method name and source file position. To facilitate the
explanation below, we call the line in each frame as crashing line, call the crashing line at
the top frame as crashing point, and call the method in each frame as crashing method.
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java.lang.IndexOutOfBoundsException

org.netbeans.lib.editor.util.GapList.addArray(GapList.java:576)

org.netbeans.lib.editor.util.GapList.addArray(GapList.java:561)

org.netbeans.lib.editor.util.GapList.addAll(GapList.java:550)

java.awt.EventDispatchThread.run(EventDispatchThread.java:110)

… … 

org.netbeans.lib.lexer.TokenListList.replace(TokenListList.java:232)

Frame 0

Frame 1

Frame 2

Frame 42

Frame 3

Fig. 2 An example of a crash stack

In large-scale and widely-used systems such as Windows, Mozilla Firefox and Netbeans,
crash reporting systems would receive a large number of crash reports in one day. For exam-
ple, in Microsoft, Windows Error Reporting system has collected billions of crash reports
during their ten years operation. Many crash reports are duplicate since they are caused
by the same bug. To prioritize the debugging effort, crash reporting systems automatically
group duplicate crash reports into buckets, based on crash signatures (Mozilla crash reports
2015) or similar crash stacks (Dang et al. 2012). Then a bug report will be generated for
a crash bucket, when the crash bucket is serious to catch the developers’ attention (e.g.,
the crash occurrence for a bucket exceeds a threshold (Dang et al. 2012; Netbeans report
exception faqs 2015)). Ideally, each bucket should correspond to a unique crashing bug.

2.2 Collecting Bug Inducing Changes Based on Bug-Fixing Changes

As bug inducing changes are widely used in change-based software defect prediction
(Kamei et al. 2013; Kim et al. 2008, 2011), some techniques (Kim et al. 2006; Śliwerski
et al. 2005) are proposed to identify bug inducing changes based on bug-fixing changes.
Sliwerski et al. proposed the SZZ algorithm (Śliwerski et al. 2005). The algorithm mainly
works in three steps. First, it finds the bug-fix changes through the links between bug reports
in bug tracking system (e.g., BUGZILLA) and committed changes in the source code repos-
itory (e.g., CVS, Git, or Mercurial). Then, it identifies the modified source code in the
bug-fixing changes. Finally, it traces back to the revisions where the modified source code
was introduced, and filters out the revisions that are impossible to induce the bug. Kim et al.
(2006) improved the SZZ algorithm by removing non-semantic source code changes and
outlier fixes.

Note that, the existing techniques to collect the bug inducing changes are under the
assumption that, the bugs have been fixed and the bug-fixing changes are available. In con-
trast to these techniques, our paper aims at locating inducing changes before the bug is
fixed, given only buckets of crash reports. In this paper, since both our empirical study and
experimental evaluation require bug inducing changes, we also leveraged the improved SZZ
algorithm (Kim et al. 2006) to collect data.

2.3 Predicting Bug Inducing Changes

To help avoid the introduction of bugs when a change is committed, some researchers pro-
pose “Just-In-Time Quality Assurance”. This line of studies builds the models that predict
if a change is likely to be bug inducing (Kamei et al. 2013; Kim et al. 2008, 2011) or
crash-inducing (An and Khomh 2015; An et al. 2017) before a change is integrated into
the code repository. These techniques are useful for prioritizing the limited software quality
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assurance resources to those buggy-prone changes. Although these techniques can predict
changes as bug inducing or crash-inducing, they cannot distinguish which bug an induc-
ing change should be blamed for. In other words, these techniques are not applicable to the
targeted problem in this paper, which locates the crash-inducing changes given a bucket of
crash reports.

2.4 Challenges

For large-scale projects, developers may commit a large number of changes. Thus, locat-
ing bug inducing changes is non-trivial. We investigated three releases from the Netbeans
project. As shown in Table 1, each release includes 110K - 176K revisions.

One possible method to reduce the candidate changes is to extract only the revisions from
which every line of source code in current release is introduced to the source code repository.

The intuition behind this method is that, most of bug inducing changes would insert
some pieces of code in the current release and this allows us to trace the inducing changes.
Although it is possible that a bug inducing change may only delete some pieces of code
and cause a bug, we found that this case is very rare. In our study, none of crashing bugs
are caused by a crash-inducing change which only deletes pieces of code. The command
annotate facilitates us to check the changes from which each line of a given source file is
introduced. In this way, we can get a smaller set of candidate bug inducing changes from
Mercurial annotate command. However, the number of candidate changes by this method is
still large, ranging from 47–62 K, as is shown in Table 1.

3 Empirical Study

3.1 Setup of Empirical Study

Although crash-inducing changes provide developers with useful contextual information for
debugging, there are no systematic studies on characterizing the crash-inducing changes, to
the best of our knowledge. In this paper, we aim to fill in this gap by conducting an empirical
study on crash-inducing changes. We try to answer the following two questions:

– Question 1:Can we narrow down the candidate set of the crash-inducing changes based
on crash reports?

Crash-inducing changes exist in the code repository. Since there are a large number
of software changes in code repository, exploring the crash-inducing changes directly
from the whole code repository is non-trivial. Thus, we propose the first research question to
find out whether we can narrow down the searching scope of crash-inducing changes by
leveraging the crash reports. Crash reports provide abundant crash relevant information

Table 1 Number of potential crash-inducing changes

Subject Release date #Revisions committed #Revisions from

before release mercurial annotate command

Netbeans 6.5 Nov. 20, 2008 110,887 47,537

Netbeans 6.7 Jun. 29, 2009 139,189 56,017

Netbeans 6.8 Jun. 15, 2010 158,936 62,417
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(e.g., crash stack). The prior studies (Schroter et al. 2010; Wu et al. 2014) have shown
that, crash stacks are useful in finding faulty modules. Inspired by these studies, we
propose to leverage crash reports to explore the candidates of crash-inducing changes.

– Question 2:What are the characteristics of crash-inducing changes?
The second research question is to facilitate the understanding of crash-inducing

changes. The characteristics of crash-inducing changes are useful in building the statis-
tical models for locating crash-inducing changes. Based on the results, we propose an
automatic technique to locate the crash-inducing changes in Section 4.

3.2 Data Collection

We chose NetBeans as the subject of our empirical study for three reasons. First, it is a
popular and active open source project. Second, it maintains public tracking systems for
both bug reports (Netbeans bugzilla 2015) and crash reports (Netbeans exception reports
2015). Third, the project is well-maintained. The source code repository is hosted in the
online site (Netbeans source code repository 2015), and developers maintain change logs in
good quality.

Especially, 82.5% (9211/11170) of bug reports have links to bug-fixing changes. This
facilitates us to identify the crash-inducing changes for crashing bugs.

To identify the crash-inducing changes for crash buckets, we mined the crash reports,
bug reports, and software changes as follows:

1. We collected crash reports and their bucket information from NetBeans Exception
Reports (Netbeans exception reports 2015), and then identified the crash buckets that
have been assigned to a bug whose status is FIXED. Note that, in NetBeans, each crash
bucket is assigned to only one bug. Thus, each of our collected crash buckets has an
explicit link to a fixed bug.

2. For each bucket extracted in Step (1), we leverage the ID of its linked bug, mine the
change logs in the code repository as described in our previous work (Wu et al. 2011),
and identify the crash-fixing changes for the linked bug.

3. Since we have obtained the bug-fixing changes, we leveraged the improved SZZ algo-
rithm (Kim et al. 2006) to identify the bug inducing changes. Finally, we obtained the
crash-inducing changes for each crash bucket.

We use the extracted crash buckets and their corresponding crash-inducing changes in
the following empirical study, which enables us to answer the two research questions.

3.3 Data Validation

Since the quality of collect data is important to draw valid conclusions in our empirical
study, it is important to ensure the data quality. To minimize this threat, we conduct manual
inspections on the collected data, which includes the subject Netbean 6.5, 6.7 and 6.8 as
shown in Table 1. There are two steps that may affect the data quality. One is the step to
build the links between the crashing bugs and the bug-fixing changes (Step 2 in Section 3.2).
The other is the step to identify the crash-inducing changes from the bug-fixing changes
(Step 3 in Section 3.2).

To guarantee the quality of the links between crashing bugs and the bug-fixing changes,
we manually inspect the link data. First, we verify whether the ID of linked bug appears
in the log message of the linked changes. Second, we verify whether the number appear-
ing in the log message indeed represents a bug ID, by searching for the keywords such as



2874 Empir Software Eng (2018) 23:2866–2900

“issue #”, “bug #”, and so on. Only if two conditions are satisfied, we will label a link as a
true link.

To guarantee the quality of the collected crash-inducing changes, we also conduct manual
inspection. We adopt the manual examination approach similar to the previous study (Kim
et al. 2006). Two graduate students performed the manual verification independently. One
manually marked each collected crash-inducing change as true or false. The other reviewed
the marks. Only if the two students reach on a consensus that a change is a true crash-
inducing change, we will use it in our empirical study. In total, 58.6% (242/417) of candidate
crash-inducing changes are considered as noise data and filtered out in our empirical study.

3.4 Results of Empirical Study

Observation 1 We can narrow down the candidate set of the crash-inducing changes based
on crash reports.

Crash reports provide crash relevant information including the crash stack and the revi-
sion number where the crash happens (we call it crashing revision for short). Take the crash
report in Fig. 3 as an example, it contains an 8-frame crash stack and the crashing revision
is c39b9046b510.

The Mercurial built-in command annotate facilitates us to check the revision from which
each line of a given source file is introduced in the source code repository. For exam-
ple, Fig. 3 shows the annotated information of the source file B.java in the revision
c39b9046b510. Based on those annotated information of each frame in the crash stack,
we explore three forms of crash-inducing change candidates as follows:

– Form 1: Candidates associated with the methods in a crash stack. This candidate set
considers all the revisions where lines in crashing method of each frame are introduced.
For instance, for the second frame in Fig. 3, the crashing method is foo(), thus the
whole foo’s annotated revisions from Line 100 to Line 112 will be included.

– Form 2: Subset of candidates from Form 1 which exclude irrelevant revisions using
control flow analysis. As some statements in crashing methods are not reachable to
the crashing line, the revisions where these statements are introduced are unlikely to
be crash-inducing changes. Therefore, we follow our previous work CrashLocator (Wu
et al. 2014), and use control flow analysis to reduce the candidate inducing changes
from Form 1. For example, Fig. 3b shows the control flow analysis for the crashing
method foo(). Through the analysis, we can extract the reachable statements which
are Line 100 to 105. Finally, we can get a smaller candidate set of inducing changes
than candidates from Form 1, including only 5 changes in crashing method foo().

– Form 3: Subset of candidates from Form 1 which exclude irrelevant revisions using
backward slicing. As some statements have no impact on the crash-related variables
(i.e., the variable that are used in the statements in crashing lines), the revisions where
these statements are introduced are unlikely to be crash-inducing changes. Therefore,
we follow our previous work CrashLocator (Wu et al. 2014), and use the backward
slicing (Venkatesh 1991) to reduce the candidate inducing changes. For example, in
Fig. 3b, variable bar and a are crash-related. By backward slicing, we exclude Line 101
and 104, since they do not affect the crash-related variables. Through this analysis, we
only include 2 changes in crashing method foo(). It should be noted that, backward
slicing also utilizes the control flow analysis to explore only the reachable statements,
so we can get a smaller candidate set of inducing changes than candidates from Form 2.
In other words, the candidate set from Form 2 subsumes the candidate set from Form 3.
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Crash Report

Crash Stack

A.java:10

C.java:121

B.java:105

……

0

Crash Revision:
c39b9046b510

8

1

Source Code

B.java c39b9046b510

……
public boolean foo() {
String msg = “foo”;
A a = getA();
if(a!=null){
msg = “bar”;
Bar bar = a.getBar();
Log.i(msg);
return true;

} else {
Log.i(msg);
return false;

}  
}

100 f2c5bd530146:
101 bfda74157943:
102 0f0b92f3cee5:
103 1b8a3e40ee3b:
104 bb5436a892c1:
105 0f0b92f3cee5:
106 bfda74157943:
107 d745f9e69376:
108 3e22d9c7b912:
109 bfda74157943:
110 068793f65ef1:
111 f2c5bd530146:
112 f2c5bd530146:

Annotation

Entry: Line 100

Node 1: 
Line 101

Node 2: 
Line 102

Node 3:
Line 103

Node 4: 
Line 104

Node 9: 
Line 109

Node 5: 
Line 105

Node 6: 
Line 106

Node 10: 
Line 110

Node 7: 
Line 107

Exit: Line 112

Node 11: 
Line 111

Control Flow Graph:foo() Backward Slicing for foo() at Line 105

Node 5: 
Line 105

Node 4: 
Line 104

Node 3: 
Line 103

Node 2: 
Line 102

Node 1: 
Line 101

used variablesis in slice?

{bar, a}

{msg}

{a}

{msg}

{a}

crash-related 
variables

Candidate changes from Form 2: Candidate changes from Form 3:

f2c5bd530146
bfda74157943
0f0b92f3cee5
1b8a3e40ee3b
bb5436a892c1

Line 100:
Line 101:
Line 102,105:
Line 103:
Line 104:

0f0b92f3cee5
1b8a3e40ee3b

Line 102,105:
Line 103:

crashing
line

(a)

(b)

Fig. 3 Examples of extracting candidates of crash-inducing changes from crash stack

For each crash report, we can extract the candidate changes based the above three forms.
One bucket may contain multiple crash reports. Thus, for each crash bucket, we merge the
candidate changes from each crash report and use the merged set as the candidate changes
for this bucket. Then, we verify whether the crash-inducing changes of a given bucket are
in the above three candidate forms.

We take the three releases of Netbeans project shown in Table 1 as the subjects in our
empirical study. The basic information of the subjects and the results are shown in Table 2.
The three subjects include 155 buckets in total. The crash-inducing changes of 75.5%,
74.8% and 72.9% of the buckets can be found by the candidate set in Form 1,2, and 3
respectively. The candidates selected from these three forms differ in their sizes, as well as
their potential capability of locating bugs. Figure 4 shows the number of candidates of these
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Table 2 Subjects and results of
the empirical study Subject #Buckets Form 1 Form 2 Form 3

Netbeans 6.5 42 25(59.5%) 24(59.5%) 23(54.8%)

Netbeans 6.7 61 51(83.6%) 51(83.6%) 49(80.3%)

Netbeans 6.8 52 41(78.8%) 41(78.8%) 41(78.8%)

Total 155 117(75.5%) 116(74.8%) 113(72.9%)

(The column Form i

(i = 1, 2, 3): the num/percentage
of crash buckets whose inducing
changes are in the candidate set
off Form i.)

three forms. Candidates from Form 1 include the largest number of changes, on average 48.2
changes for each bucket. Candidates from Form 2 include comparably fewer changes, on
average 36.2 changes for each bucket. Candidates from Form 3 include the fewest changes,
on average 24.5 changes for each bucket. The three candidate forms of inducing changes
differ slightly in the percentage of buckets that can be located, but they differ significantly
in their size.

Observation 2 Crash-inducing changes exhibit certain characteristics.
Through the empirical study, we make the following observations about the characteris-

tics of crash-inducing changes.

Observation 2.1: Crash-inducing changes appear closer to the crash point. Previ-
ous study showed that faulty functions are closer to the crash point than non-faulty functions
in a crash stack (Dang et al. 2012), this motivates us to investigate if crash-inducing changes
have the similar characteristics. We denote distance to crashing point for a change r as the
offset from the topmost frame where we find r to the frame where the crashing point is.
Figure 5a shows the results of the statistics of distances of the crash-inducing changes for
the 155 buckets. The crash-inducing changes of 31.0% of the buckets have a distance of 0
to the crashing point, 67.7% are within the distance of 5, and 72.3% are within the distance
of 10 to the crashing point. The results show that, crash-inducing changes appear closer to
the crash point.

Observation 2.2: Crash-inducing changes appear closer to the crashing lines. In
our study, we found that in a crashing method, the lines closer to the crashing line are more
likely to be buggy, so the changes that introduced these lines are more likely to be crash-
inducing changes. We denote distance to crashing line for a change r as the minimum offset
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Fig. 5 The statistics of distances to crashing point and crashing line for crash-inducing changes

between lines which are introduced by r and the crashing lines. Figure 5b shows the results
of the statistics of distances to crashing line for the crash-inducing changes of 155 buckets.

The crash-inducing changes of 72.9% of the buckets are within the distance of 5 to the
crashing lines. The empirical results show that, crash-inducing changes appear closer to the
crashing lines.

Observation 2.3: Crash-inducing changes for a bucket appear frequently in the
crash reports of that bucket, and those changes that appear in multiple buckets are
less likely to be crash-inducing changes. A bucket may contain multiple crash reports.
Intuitively, the change which induced this crash bucket is likely to appear frequently in its
crash reports. In our empirical study, we investigated how frequently the crash-inducing
changes appear in the corresponding bucket. We found that, for 109(70.3%) of buckets,
their corresponding crash-inducing changes appear in 100% of their crash reports.

The results showed that changes which induced a crash bucket appear frequently in the
crash reports of that bucket.

A change may appear in multiple crash buckets. In this study, we found that, for the
changes which appear in more than 10% of the buckets, 89.1% of them are not crash-
inducing changes. For the changes which appear in more than 50% of the buckets, 100% of
them are not crash-inducing changes. The results indicate that, if a change appears in many
different buckets, it is less likely to be crash-inducing changes. This observation is similar to
the observation on buggy functions for crashing bugs in our previous study (Wu et al. 2014).

Observation 2.4: If a change affects the source files in the component where the
bucket of crash reports happened, it is more likely to be a crash-inducing change
for that bucket. NetBeans is composed of hundreds of components. Since an execution of
NetBeans is usually composed of the interactions between different components, the crash
stacks in crash reports contain methods from different components. In the existing crash
reporting system (Netbeans exception reports 2015), each bucket of crash reports will be
automatically assigned to a specific component (Netbeans report exception faqs 2015). This
raises a question that, whether this assigned component can help locate the crash-inducing
changes. Thus, we investigated that, whether the crash-inducing changes of a bucket affect
(add/delete/modify) any source file in the component which is assigned to that bucket. We
found that, for 94.7% of the buckets, their crash-inducing changes affect at least one source
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file in the assigned component. The results show that, the crash-inducing changes are more
likely to affect the source files in the component assigned to the bucket.

Observation 2.5: The committed time of crash-inducing changes is closer to the
reporting time of the crashes. Prior study (Kim et al. 2007) showed that, if an entity was
changed recently, it will tend to introduce faults soon. This motivates us to study, whether
a change is more likely to be crash-inducing if its committed time is closer to the crash
reporting time. In our study, we found that, for 90.3% of the buckets, their inducing changes
were committed within 12 months before the reporting time of the corresponding bucket.
Furthermore, we ranked all the candidate changes (extracted from crashing methods) in a
bucket based on the reverse chronological order of their committed time, and found that
for nearly 70% of the buckets, their crashing inducing changes are ranked within top 20.
The above empirical results shows that, the time of crash-inducing changes are closer to the
reporting time of the crashes.

Although our study is based only on the Netbeans project, we believe the observations
in our study can be also generalized to other projects, since these observations are consis-
tent with with some previous studies on different projects (such as FireFox and Eclipse)
(Wu et al. 2014; Schroter et al. 2010). For example, the observation that, crash-inducing
changes appear closer to crash point, is consistent with the previous findings (Wu et al. 2014;
Schroter et al. 2010) obtained from FireFox and Eclipse projects that, buggy functions/files
appear closer to crash point. We also believe that, for different projects across different
domains, languages and technologies, the characteristics of crash-inducing changes may
vary. For example, the distance value considered as “close to” crash point may vary across
different projects. This motivates us to use the supervised learning approach (See Section 4)
that can well characterize the change-inducing changes for one project using the project’s
historical data.

4 ChangeLocator

4.1 Overview of ChangeLocator

In this section, we describe the proposed approach ChangeLocator. The goal of ChangeLo-
cator is to locate the crash-inducing changes from the candidates found in the previous step.
We need to assign a suspicious score to each candidate crash-inducing change. Then, the
candidate changes can be ranked by their suspicious score.

Since the problem of ranking crash-inducing changes for a crash bucket is similar to the
problem of ranking relevant documents for a query in IR(information retrieval), we propose
to leverage the techniques used in information retrieval to locate the crash-inducing changes.

A class of IR techniques (Nallapati 2004; Robertson and Jones 1976) transforms the
information retrieval problem into the classification problem, i.e., classifying the entire col-
lection of documents into two classes: relevant and irrelevant. Then, it leverages different
classification algorithms to estimate the probability that a document is relevant to a query,
and ranks the documents based on the probability. Similarly, ChangeLocator transforms
the problem of locating crash-inducing changes into the classification problem, i.e., clas-
sifying a candidate change as crash-inducing or non-crash-inducing. Then, classification
algorithms are used to estimated the probability of a change being crash-inducing for a
crash bucket. Finally, ChangeLocator ranks the candidate changes. As classification is a
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supervised learning technique which requires training dataset, ChangeLocator collects the
data from the historical crash buckets that have been fixed to build the training dataset.

Figure 6 gives the overall structure of ChangeLocator. First, ChangeLocator collects
existing crash buckets that have been fixed and their candidate crash-inducing changes from
crash reports (Section 3), and then identify the crash-inducing changes (Section 2.2).

The candidate changes can be derived from three candidate forms as described in
Section 3.4. Since the candidate Form 3 includes the fewest candidate changes and can
locate nearly the same number of crash buckets as the other two candidate forms, Change-
Locator by default extracts the candidate changes from Form 3. Second, for each candidate
change in a crash bucket, if it is a crash-inducing change of the crash bucket, ChangeLoca-
tor labels it as TRUE (crash-inducing), otherwise labels it as FALSE (non-crash-inducing).
At the same time, for each candidate change, we extract several features. Combining fea-
tures and label of a change in a bucket, we create an instance. With the instances of existing
buckets, we create a training corpus. Then, ChangeLocator uses a classification algorithm
(e.g., Logistic Regression) and the training corpus to build the learning model. Finally,
when a new crash bucket comes, the features of its candidate crash-inducing changes are
created. For each change, the learning model estimates the probability that the label of the
change is TRUE. We use this probability as the suspicious score of each change, and rank
the candidate crash-inducing changes for that bucket.

4.2 Feature Engineering

Since our approach ChangeLocator is based on the classification, its performance relies on
the features used in the learning model. In this paper, we select the features based on the
observations from our empirical study and some priori studies. These features are as follows.

Inverse Average Distance to Crashing Point (IADCP). Our empirical study showed
that, if a revision appears in a crash frame which is closer to the crash point, it is more likely
to be the crash-inducing change. Therefore, we identify a feature Inverse Average Distance
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to Crash Point (IADCP) that measures how close a revision r is to the crash point of crash
reports in a crash bucket B. The formal definition is as follows.

IADCP(r, B) = 1

1 +
n∑

j=1
DCPj (r)/n

(1)

where n is the number of crash reports in the bucket B which contain revision r , and
DCPj (r) represents the minimum distance between the revision r and the crash point in
the j th crash report of the bucket B.

Inverse Average Distance to Crashing Line (IADCL): As is shown in our study, if
a revision appears closer to the crashing line of a frame, it is more likely to be the crash-
inducing change. Thus, we identify a feature Inverse Average Distance to Crashing Line
(IADCL) to measure how close a revision r is to the crashing lines of crash reports in a crash
bucket B. The definition of IADCL is as follows.

IADCL(r, B) = 1

1 + min
j=1...n

DCLj (r)
(2)

where n is the number of crash reports in the bucket B, and DCLj (r) represents the
minimum distance between the revision r and any frame in the j th crash report of the
bucket B.

Inverse Time Distance to Crash Revision (ITDCR): Our study found that, if the com-
mitted time of a revision is closer to the committed time of the revision where the crash
occurred, it is more likely to be the crash-inducing change. Note that, this observation
is based on the chronological order of the committed time of candidate crash-inducing
changes. Therefore, we design a feature Inverse Time Distance to Crash Revision (ITDCR)
as follows.

IT DCR(r, B) = 1

1 + Rank(r, B)
(3)

where Rank(r, B) represents the rank of the revision r among all the candidate crash-
inducing changes, based on the inverse chronological order of the committed time of each
change.

Revision Frequency (RF): In our empirical study, we found that, if a revision appears
frequently in crash reports of a bucket, it is more likely to be the crash-inducing change.
We identify a feature Revision Frequency (RF) that measures the frequency of a revision r

appearing in crash reports of the crash bucket B.

RF(r, B) = Nr,B

NB

(4)

where Nr,B is the number of crash reports in the bucket B that the revision r appears. NB is
the number of crash reports in the bucket B.

Inverse Bucket Frequency (IBF): In our study, it is found that, if a revision appears
in different buckets of crash reports, it is less likely to be the crash-inducing of a specific
crashing fault. Based on this finding, we extract the feature Inverse Bucket Frequency (IBF)
for a revision r as follows.

IBF(r) = log(
#B

#Br

+ 1) (5)
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where #B is the total number of buckets, and #Br is the number of buckets whose candidate
changes include the revision r . The design of IBF is analogous to IDF (Inverse Document
Frequency) in information retrieval technology, which is used to decreased the importance
of less meaningful terms (e.g., “a”, “an”, “the” and so on).

Crash Component (CC): Our study found that, if a revision affects (i.e., adds, deletes or
modifies) source files of the component that the crash bucket belongs to, it is more likely
to be the crash-inducing change. Thus, we design a feature Crash Component (CC) for a
revision r in the bucket B as follows.

CC(r, B) =
⎧
⎨

⎩

1 if r affects source files in the
component that B belongs to

0 otherwise
(6)

Revision’s Lines of Added/Deleted/Changed Code (RLOAC, RLODC, RLOCC):
Prior studies (Moser et al. 2008; Nagappan and Ball 2005) showed that, the size of a change
is good indicator of defect-prone modules. If the size of a change is larger, it is more likely to
be defective. Therefore, we use Revision’s Lines of Added Code (RLOAC), Revision’s Lines
of Deleted Code (RLODC), and Revision’s Lines of Change Code (RLOCC) as features for
a revision r . These features represent the number of lines of added/deleted/changed code a
revision r commits.

Number of Affected Files (NAF): As shown in previous study (Nagappan and Ball
2005), the number of affected files by a revision is a good indicator of defect-prone changes.
If the number of files that a revision affects is large, this revision is more likely to be
defective. Therefore, we also adopt Number of Affected Files (NAF) as a feature.

The features described above can have very different range values. The existing studies
(Kotsiantis et al. 2006; Al Shalabi et al. 2006) showed that the accuracy and the efficiency
of classification algorithms would be improved if the features to be analyzed are normalized
into a similar range. Therefore, we use the min-max normalization (Witten et al. 2016)
method to normalize all the features in training and testing dataset, with the values of each
feature ranging from 0 to 1.

4.3 Training a Classification Model

We constructed the training corpus from the historical crash buckets that have been fixed.
Given unresolved crash buckets in the current version, we use the resolved buckets in the
previous versions as training dataset.

Since the number of the crash-inducing changes is much smaller than the number of non-
crash-inducing changes, the training dataset is typically imbalance. The imbalanced dataset
mostly can compromise the performance of most standard learning algorithms in a signifi-
cant way (Batista et al. 2004; Prati et al. 2004). To handle the imbalance dataset problem in
the training process, there exist some typical techniques including over-sampling and under-
sampling. The type of over-sampling techniques duplicate the sampling instances of the
minority class (e.g., the instance whose label is TRUE in our case), while the type of under-
sampling techniques remove the sampling instances of the majority class. In this paper,
we adopt the random under-sampling technique, by which we randomly select and remove
instances of the majority class such that the number of both classes are made equal. There
are two reasons for the adoption of this technique: (1) there is some empirical evidence
that the random sampling techniques performs better than or as well as other sophisticated
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sampling techniques in handling imbalanced dataset problem (Mani and Zhang 2003); (2)
over-sampling may result in much computational costs (Nallapati 2004).

Having collected the data, we train a classification model using a standard classifier (such
as Logistic Regression, Decision Tree, Naive Bayes, etc), which can classify a candidate
change into crash-inducing change (TRUE) or non-crash-inducing change. We use Logistic
Regression as the default classifier.

4.4 Ranking Based on Classification

Having trained a classification model, when a new crash bucket comes, ChangeLocator first
extracts the candidate crash-inducing changes from crashing methods. Then, it extracts the
features of each candidate crash-inducing change as described in Section 4.2. By apply-
ing the learning model that has been trained, ChangeLocator outputs the probability that
the label of each change is TRUE and uses the probability as the suspicious score of each
change. Finally, we rank all candidate crash-inducing change by the suspicious scores in
descending order.

5 Experimental Design

5.1 Subjects for Evaluation

NetBeans is a popular open source integrated development environment for application
development cross different operating systems. We collected the crash-inducing changes
dataset from Netbeans 6.5 to 7.2 (noted that, Netbeans does not have version 6.6). Table 3
shows the basic information of the subjects. Each subject contains 25,558∼53,264 source
files, 5,524K∼11,632K lines of code, and 110,887∼235,526 revisions. There are 313 buck-
ets in total. ChangeLocator requires dataset for training. For the subject Netbeans 6.5, there
is no available training dataset, if we consider the chronological order of the collected
Netbeans versions. Therefore, we do not conduct testing on Netbeans 6.5, and only utilize it
for training. For other subject, we use all of the buckets in its previous versions as training
dataset. For example, to locate crash-inducing changes for Netbeans 6.8, we use the buckets
in Netbeans 6.5 and 6.7 as the training dataset.

In our previous work (Wu et al. 2014), we used Mozilla products as subjects, since they
also have crash data publicly available. However, we found that it is difficult to collect crash-
inducing changes forMozilla projects. Due to the parallel development in multiple branches,
developers often commit different bug-fixing patches for a same bug in different branches
(This will not bring the problems in collecting buggy functions (Wu et al. 2014) and buggy
source files (Wang et al. 2016), since these patches mostly modified the same functions).
We found that the number of crash-inducing changes is often large and many of them con-
tain noise. The noise data is due to two issues. (1) The bug-fixing patches for a same bug in
different branches would modify different source lines, and the crash-inducing changes gen-
erated from different patches are very different sometimes. (2) Unlike the Netbeans project
where each crash bucket is only linked to a single bug, a crash bucket in Mozilla often has
links to multiple related bugs (these bugs are related, since they share the same crash sig-
nature). However, not all of these related bugs are valid to the given crash bucket. Take
the crash bucket “mozilla::ipc::FatalError | mozilla::layers::PLayer
TransactionParent::Read” in Firefox 45.0 as an example. There are four related
bugs linked to this crash bucket, Bug 1286437, 1248156, 1240975, and 1208226. Our
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Table 3 Subjects for evaluation

Subject #Files KLOC #Revs #Buckets

Netbeans 6.5∗ 25,558 5,524 110,887 42

Netbeans 6.7 48,044 10,331 139,189 61

Netbeans 6.8 49,918 10,717 158,936 52

Netbeans 6.9 53,264 11,632 176,495 40

Netbeans 7.0 46,189 9,745 196,886 38

Netbeans 7.1 38,900 8,429 217,206 41

Netbeans 7.2 39,674 8,666 235,526 39

∗: Netbeans 6.5 is only used for training.
#Revs is the number of revisions committed before the release

manual validation based on the information in bug reports finds that Bug 1248156 dupli-
cates Bug 1208226, and they are valid bug reports that concern Firefox 45.0, while the other
two are invalid to this version. Therefore, only Bug 1248156 and Bug 1208226 can be con-
sidered as the real bug of this crash bucket. If we use the fixing changes of invalid bugs to
identify crash-inducing changes, we would include much noise. Eliminating all these noise
requires much manual effort, and sometimes it is even impossible due to the insufficient
information in bug reports. Due to the noise problem, we currently do not include Mozilla
projects as our evaluation subjects.

5.2 Research Questions

To evaluate the effectiveness of our technique, we design experiments to address the
following research questions:

RQ1: Can ChangeLocator effectively locate crash-inducing changes?

In this RQ, we evaluate the effectiveness of ChangeLocator in locating crash-inducing
changes, using the evaluation metrics as described in Section 5.3. We extract the candidate
changes from Form 3 as described in Section 3. We compare ChangeLocator with the state-
of-the-art IR based approach Locus (Wen et al. 2016), which can locate bugs at the change
level. Locus takes a bug report as input, then queries the code changes in the code repository,
and locates the bug inducing changes. Since the crash reports can be used as a bug report,
we then can adopt Locus to locate crash-inducing changes. To generate one bug report for
each bucket of crash reports, we use the crash stacks as the content of the bug report. To
verify whether it is reasonable to use only crash stacks as the bug reports for Locus, we
manually inspect the bug reports that are corresponding to crash buckets in Netbeans. The
bug description of most of the collected crashing bug reports includes only crash stacks or
crash reports. Moreover, our proposed technique is to locate crash-inducing changes once
buckets of crash reports are collected.

Therefore, to compare ChangeLocator with Locus fairly, we use crash stacks as input
for both techniques. To narrow down the searching space of inducing changes, Locus also
utilizes the candidate from Form 3 rather than all the changes in the repository, to locate
crash-inducing changes.
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Although there are many different kinds of bug localization techniques as described in
the previous comprehensive literature survey (Dit et al. 2013), we select only Locus for
comparison because of the following reasons. First, the input of our target problem is only
crash stacks, and only IR-based bug localization techniques are applicable to this problem.
Other techniques, such as spectrum-based approaches which require dynamic analysis to
collect execution traces, are not applicable. Second, Locus is the state-of-the-art IR based
approach. The recent study (Wen et al. 2016) showed that Locus overwhelms other IR-based
approaches, such as BRTracer (Wong et al. 2014), BLUiR (Saha et al. 2013), and AmaLgam
(Wang and Lo 2014). Third, Locus is designed to locate bugs at the change level.

RQ2: How does each feature contribute to the effectiveness of ChangeLocator?

We proposed 10 features which are correlated with crash-inducing changes in Section 3.
This RQ aims at evaluating the effectiveness of each feature.

We evaluate the contribution of each feature through the two following steps. First, for
all the evaluation subjects, we first run ChangeLocator using a single feature each time sep-
arately, and compare the learning results of each single feature with the result of learning
with all features. Second, similar to the previous study (Wu et al. 2014), we run ChangeLo-
cator by adding one feature incrementally based on the performance of each single feature,
following the order from the worst one to the best one. In this way, we know how much
contribution a feature has made to ChangeLocator.

RQ3: How do different candidate forms of crash-inducing changes affect the
effectiveness of ChangeLocator?

As introduced in the empirical study (See Section 3), we explored three forms of candidate
crash-inducing changes from a bucket of crash reports.

Form 1 includes the largest number of candidate changes, and subsumes candidates
in Form 2 and Form 3. As we can see from Table 2, candidates in Form 1 can cover
more bugs than the other two forms. This indicates that, Form 1 is better than the other
two forms, in terms of the capability of locating bugs. However, the size of candidates
in Form 1 is larger and would have side-effect in ranking crash-inducing changes. This
is because the larger the size, the more difficult for ChangeLocator to rank the crash-
inducing changes well among the candidates. Therefore, we need to find an ideal candidate
set which achieves good balance between the capability of locating bugs and the ranking
quality.

The goal of RQ3 is to evaluate the effectiveness of the above three forms on the perfor-
mance of ChangeLocator. To answer this question, we run ChangeLocator with different
candidates of crash-inducing changes extracted by the three forms, and then compare their
performance.

5.3 Evaluation Metrics

ChangeLocator produces a ranked list of changes according to their suspicious score. Devel-
opers can then examine the list from top to bottom, and locate the inducing changes for a
crash bucket. It is desirable that the crash-inducing changes are ranked higher in the list.
We evaluate the performance of ChangeLocator using the following metrics. Note that,
since we employ the random over-sampling in the training process, to ensure that the con-
clusions of our experiment are general, we repeat the sampling process for 100 times, run
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ChangeLocator, and calculate the average value of the following evaluation metrics as the
final results.

1. Recall@N: This metric reports the percentage of buckets, whose crash-inducing
changes can be discovered by examining the top N (N=1,2,3,...) of the returned suspi-
cious list of changes by ChangeLocator. The higher the value, the less efforts required
for developers to locate the crash-inducing changes, thus the better performance.

2. Mean Reciprocal Rank(MRR): This is a statistic for evaluating a process that produces
a list of possible responses to a query (Manning et al. 2008). The reciprocal rank of a
query is the multiplicative inverse of the rank of the first relevant answer found. The
mean reciprocal rank is the average of the reciprocal ranks of the results of a set of
queries Q. The formal definition of MRR is as follows:

MRR = 1

|Q|
|Q|∑

i=1

1

FRi

(7)

FRi represents the rank of the first relevant answer found in the returned list. Clearly,
the higher the value, the better the performance of locating crash-inducing changes. We
use this metric to evaluate the ability of ChangeLocator to locate the first crash-inducing
change for a bucket.

3. Mean Average Precision(MAP): MAP provides a single value measuring the quality
of information retrieval performance(Manning et al. 2008). For a single query, it takes
all the relevant answers into consideration with their ranks. The average precision is
computed as:

AvgP =
∑n

k=1(rel(k) ∗ P(k))

N
(8)

where k is the rank in the sequence of the retrieved answers, n is the total number of
the retrieved answers and N is the total number of all relevant answers. In this formula,
rel(k) is an indicator function equaling one if the item at rank k is a relevant answer,
and zero otherwise. P(k) is the precision at the given cut-off rank k, which is computed
as:

P(k) = Nr

k
(9)

where Nr is the number of relevant answers in the top k of the returned list (Turpin and
Scholer 2006).

For a set of queries Q, the mean average precision is computed as:

MAP =
∑|Q|

i=1AvgP (i)

|Q| (10)

This metric is used to evaluate the ability of ChangeLocator to locate all the crash-
induncing changes for a bucket. Clearly, the higher the value, the better the performance.

6 Evaluation Results

RQ1: Can ChangeLocator effectively locate crash-inducing changes?

Table 4 shows the results of our evaluation. On average, ChangeLocator can sucessfully
locate 44.7%, 68.5%, and 74.5% of crash buckets by examining only top 1, 5 and 10
changes. Table 4 also shows the comparison results between ChangeLocator and Locus for
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Table 4 Results of ChangeLocator and locus

Subject Approach Recall@N MAP MRR

N=1 N=5 N=10

Netbeans 6.7 ChangeLocator 12 (19.7%) 35 (57.4%) 42 (68.9%) 0.353 0.360

Locus 6 (9.8%) 22 (36.1%) 36 (59.0%) 0.222 0.233

Netbeans 6.8 ChangeLocator 20 (38.5%) 34 (65.4%) 39 (75.0%) 0.469 0.493

Locus 8 (15.4%) 23 (44.2%) 28 (53.8%) 0.253 0.265

Netbeans 6.9 ChangeLocator 18 (45.0%) 26 (65.0%) 26 (65.0%) 0.520 0.528

Locus 3 (7.5%) 12 (30.0%) 20 (50.0%) 0.168 0.182

Netbeans 7.0 ChangeLocator 19 (50.0%) 25 (65.8%) 27 (71.1%) 0.534 0.566

Locus 3 (7.9%) 12 (31.6%) 21 (55.3%) 0.197 0.203

Netbeans 7.1 ChangeLocator 23 (56.1%) 33 (80.5%) 36 (87.8%) 0.642 0.672

Locus 2 (4.9%) 14 (34.1%) 24 (58.5%) 0.201 0.205

Netbeans 7.2 ChangeLocator 23 (59.0%) 30 (76.9%) 31 (79.5%) 0.634 0.660

Locus 4 (10.3%) 13 (33.3%) 19 (48.7%) 0.218 0.218

Average ChangeLocator 44.7% 68.5% 74.5% 0.525 0.546

Locus 9.3% 34.9% 54.2% 0.210 0.218

the six subjects. As mentioned above, we use Logistic as the classifier in ChangeLocator.
The results indicate that ChangeLocator outperforms Locus in terms of all evaluation met-
rics. The improvement of ChangeLocator over Locus is 380.6% (89 more buckets), 96.3%
(87 more buckets) and 37.5% (53 more buckets) for Recall@1, Recall@5 and Recall@10
respectively on average. As for MAP, ChangeLocator outperforms Locus by 150.6% on
average, with the improvement ranging from 58.8% to 219.7%. For MRR, the improve-
ment of ChangeLocator over Locus is 151.0% on average, ranging from 54.3% to 227.6%.
We also applied the Mann-Whitney U-Test (Mann and Whitney 1947) on the comparison
between ChangeLocator and Locus, and the results showed that ChangeLocator outperforms
the existing method Locus significantly (p < 0.01).

RQ2: How does each feature contribute to the effectiveness of ChangeLocator?

Figure 7 shows the effectiveness of ChangeLocator with each feature, using the default
classifier Logistic Regression, in terms of MAP and MRR metrics. We take the average
value of evaluation metrics for all the subjects as the evaluation results. Among all these
features, RF (Revision Frequency) and RLODC (Revisions’s Lines of Added Code) are
less effective than the other features, while IADCP (inverse distance to crashing point) and
CC (Crash Component) are the most effective ones. It is also shown that, ChangeLocator
using all features significantly outperforms the one using only a single feature, with the
improvement over the most effective feature by 19.3% and 23.3% in terms of MAP and
MRR metrics respectively.

To further verify the contribution of each single feature to the performance of Change-
Locator, we incrementally apply the features RLODC, DLOAC, RF, RLOCC, NAF, IBF,
IADCL, ITDCR, CC and ITDCP to ChangeLocator. The order of incrementally applying
features is the same as the order of the performance of each feature (from the worst feature
to the best one). As shown in Fig. 8, MAP and MRR values are incrementally improved,
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Fig. 7 The effectiveness of ChangeLocator with different features (in terms of MAP and MRR)

and the best performance is achieved when all the features are combined together. Overall,
all the features can contribute to the performance of ChangeLocator.

RQ3: How do different forms of candidate crash-inducing changes affect the
effectiveness of ChangeLocator?

We run ChangeLocator on the three candidate forms of crash-inducing changes. The results
of Recall@N is shown in Fig. 9. Using the candidate Form 3, ChangeLocator achieves
the best performance in terms of Recall@N when N ≤ 5. For example, using Form 3,
ChangeLocator can locate 18.3% more buckets than that using Form 1, and 10.9% more
buckets than that using Form 2, by examining top 1 change. Using the candidate Form 2,
ChangeLocator can achieve slightly better performance than that using the Form 1, with
the improvement of 6% in terms of Recall@1. When N is increased to 6, ChangeLocator
performs similarly on the three candidate forms.

Figure 10 shows the results of MAP and MRR for the three forms. Similar to Recall@N
metrics, using the candidate Form 3, ChangeLocator achieves the best performance in terms
of MAP and MRR. For example, the candidate Form 3 outperforms the candidate Form 1
by 10.3% and 9.0%, in terms of MAP and MRR respectively. Besides, the candidate Form 3
also outperforms the candidate Form 2 by 6.9% and 6.0% for MAP and MRR respectively.
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Fig. 8 The contribution of each feature (in terms of MAP and MRR). The label 1-10 in the figure represents
the feature sets that incrementally add one feature each time in the order of RLODC, DLOAC, RF, RLOCC,
NAF, IBF, IADCL, ITDCR, CC and ITDCP
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Fig. 9 The recall@N of the three forms of candidate crash-inducing changes

Overall, we can conclude that ChangeLocator performs the best when using the candidate
Form 3.

7 Discussions

(1) How is the performance of ChangeLocator in locating crash-inducing changes
using different classification algorithms?

As our proposed technique ChangeLocator is a framework in which different classification
algorithms can be adopted, we evaluate the effectiveness our ChangeLocator with different
classification algorithms. In this RQ, we adopt four popular and representative classification
algorithms as the learning model of ChangeLocator, Logistic Regression (Logistic), Deci-
sion Tree (J48), Naive Bayes (NaiveBayes), and Bayesian Network (BayesNet), which are
implemented on top of the open source software WEKA (Weka 2016). We use the default
parameter settings of each classifier in WEKA.

Figure 11 shows the results of Recall@N using the four classification algorithms with
N ranging from 1 to 10. The results are averaged on the six subjects. It shows that Change-
Locator can locate the crash-inducing changes and rank them as top 1 among the candidate
changes for 44.7%, 34.4%, 29.8% and 47.7% of the buckets using Logistic, Naive Bayes,
Bayesian Network and J48 respectively. By examining top 5 recommended changes for each
bucket, developers can successfully locate 66.9% to 69.7% of crash buckets using different
classifiers. The differences among different classifiers are marginal in terms of Recall@5.
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Fig. 10 The MAP and MRR of the three forms of candidate crash-inducing changes



Empir Software Eng (2018) 23:2866–2900 2889

0.250

0.350

0.450

0.550

0.650

0.750

1 2 3 4 5 6 7 8 9 10

N

Logistic NaiveBayes BayesNet J48

Fig. 11 Recall@N results of different classifiers

Figure 12 shows the performance of ChangeLocator in terms of MAP and MRR using
different classifiers. Consistent with Recall@1 metric, Logistic and J48 performs slightly
better than the other classifiers. The results suggest that, we can use Logistic and J48 as the
preferred classifiers in ChangeLocator.

(2) How does the training data size affect the performance of ChangeLocator?

As ChangeLocator is a learning-based approach which requires training data, the training
data size may affect the performance of ChangeLocator. For example, as shown in Table 4,
ChangeLocator performs worse in the version 6.7 and 6.8, compared with other versions.
This is mainly because the size of training dataset for the versions 6.7 and 6.8 is smaller
than that of other versions (we only have the training dataset from the version 6.6 when
testing on the version 6.7, and the training dataset from 6.6 and 6.7 when testing on the ver-
sion 6.8). To further evaluate the impact of the size of training dataset, we further conduct
a control experiment on the subject Netbeans 7.2 which includes the largest size of train-
ing dataset. We use 100% of the buckets from the previous versions (i.e., Netbeans 6.7 to
7.1) by default. In this control experiment, we randomly sampled different ratios of buckets
from the training set, from 0.1 to 1.0. Then, we used those sampled buckets as the training
set and evaluated the performance of ChangeLocator in Netbeans 7.2. We repeat the sam-
pling process for 100 times at each sampling ratio (from 0.1 to 1.0), and report the average
performance on each evaluation metrics.

The results of MAP, MRR, Recall@1, Recall@5, Recall@10 are shown in Fig. 13. The
results indicate that, the size of the training set does affect the performance of Change-
Locator initially. The performance of ChangeLocator is increased significantly with the
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Fig. 12 MAP and MRR results of different classifiers
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Fig. 13 The performance of ChangeLocator on different training data size in Netbeans 7.2 (using logistic
regression classifier)

increasing of the training data size, when training dataset is small. For example, the MAP
value is increased from 0.418 to 0.604, with the random sampling ratio of training dataset
increased from 10% to 50%. However, when we use 50% of the buckets in the original train-
ing set, ChangeLocator can almost get its optimal performance. The results shown in Fig. 13
is evaluated on ChangeLocator using Logistic Regression. We also tried other classification
algorithms, and obtained the similar results. This evaluation result indicates that, the effec-
tiveness of ChangeLocator does not require a huge number of historical data for training. In
our experiment, 50% of crash buckets from the version 6.5 to 7.1 (about 140 buckets) are
sufficient for training an effective model to locate crash-inducing changes. The experimen-
tal results indicate that, the effectiveness of ChangeLocator does not require a large number
of training instances, and ChangeLocator can perform reasonably well when the number of
training instances reaches about 140.

(3) Can we locate crashing bugs at a finer granularity with the help of
ChangeLocator?

ChangeLocator can locate crash-inducing changes for crash buckets. A crash-inducing
change is a committed revision that developers submitted to source code repository, and it
may affect multiple source files and lines of code. The prior studies (Kamei et al. 2013;
Wen et al. 2016) showed that predicting or locating bugs at the change level can save much
efforts to examine the code. In this study, we also investigate the examination effort required
to locate crashing bugs giving the information of crash-inducing changes. As shown in
Fig. 14, the median number of source files is 6, which indicates that developers are required
to examine less than 6 source files for half of located crashing bugs. The median number
of lines of code is 619.5, which indicates that developers are required to examine less than
619.5 lines of code for half of located crashing bugs. In some cases, a crash-inducing change
could affect a large number of source files and lines of code. For example, the largest crash-
inducing change modified 658 source files and 102,858 lines of code. Such case would
result in much manual effort and may not save developers’ effort.
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Fig. 14 Examination effort for locating crashing bugs. “without” means crash-inducing changes without
crash stacks. “with” means crash-inducing changes with crash stacks

To further reduce the effort, we propose to combine the crash stack information and the
crash-inducing changes. Our empirical study and the prior studies (Wu et al. 2014; Wong
et al. 2014; Schroter et al. 2010) showed that, many buggy components (including files,
methods and crash-inducing changes) reside in crash stacks. Besides, examining the crash
stacks is a conventional way for developers to diagnose crashes (Wu et al. 2014). Inspired
by this, we only examine the hunks (i.e., a group of contiguous lines that are changed in
one commit (Wen et al. 2016)) of the crash-inducing changes which are in the source files
covered by crash stacks. In this way, we can significantly reduce the manual effort. As
shown in Fig. 14, combining crash stacks with crash-inducing changes, developers are only
required to examine 1 source file and 165 lines of code to locate half of the crashing bugs.
We conduct the Mann-Whitney U-Test and confirm that the effort (the number of source
files and the lines of code) required for examining the hunks of the crash-inducing changes
to crash stacks is significantly less than the effort for examining all the crash-inducing
changes (p-value < 0.01).

Moreover, we find that, the hunks of crash-inducing changes to crash stacks are usually
within the scope of a source file. We conduct the Mann-Whitney U-Test and confirm that
the effort for examining the hunks of the crash-inducing changes to crash stacks is signifi-
cantly less than the effort for examining the entire buggy files (p-value < 0.01). However,
examining hunks in crash stacks may miss some bugs, since the buggy code may be exe-
cuted but not recorded in crash stacks. For example, in our study, examining the hunks in
crash stacks fails to locate 25 buckets (9.2% of all the crash buckets) which can be located
by examining the entire crash-inducing changes.

In the future, we will consider to further improve ChangeLocator so that it can locate
crashing bugs at a finer granularity, such as at the hunk level. We will consider to combine
ChangeLocator with the existing crashing bug localization techniques such as CrashLocator
(Wu et al. 2014), which can locate bugs that are out of crash stacks.

(4) Why are there some crash buckets that cannot be located by ChangeLocator?

Although ChangeLocator is effective, it still cannot locate all crash buckets. There are in
total 23.2% of crash buckets that cannot be located by ChangeLocator. It is mainly because
ChangeLocator extracts the candidate inducing changes from only crash stacks and crash-
inducing changes may appear out of crash stacks. Our prior study (Wu et al. 2014) showed
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that, the buggy code may be popped out during the execution and were not recorded in crash
stacks. Similarly, if the crash-inducing changes introduce the buggy code that were popped
out during the execution, ChangeLocator will fail to locate such changes. We give an exam-
ple of such cases as shown in Fig. 15. Crash report 604701 which is caused by Bug #221173,
crashed at the line 289 in the source file InnerToOuterTransformer.java. How-
ever, the buggy statement is at the line 528 of the same file, which was executed and popped
out from the method refactorInnerClass. The buggy statement was introduced from
the revision a10666d51e59. However, since this crash-inducing change does not modify
the source code of the methods in the crash stack, ChangeLocator fails to locate the inducing
change for it.

To locate crash-inducing changes out of crash stacks, in the future we will consider to
leverage static call graph analysis adopted in the prior studies (Wu et al. 2014; Seo and Kim
2012) to explore the source code that may be executed before crashes.

8 Threats to Validity

There are potential threats to the validity of our work:

– Subject selection bias: We only use the data from Netbeans project in our experiment
because of the publicly availability of crash data. Although it is also feasible to collect
crash data from bug reporting system in some open source projects (e.g., Eclipse), crash
stacks in bug reports are optional and not many users report the crash stacks manually.
This makes it difficult to collect a large amount of crash report data. Mozilla also has
publicly available crash data. However, we found that it is difficult to collect crash-
inducing changes for Mozilla projects. Since developers often commit different bug-
fixing patches for a same bug in different branches, this makes the number of crash-
inducing changes very large. We manually checked some of the crash-inducing changes
and found many of them are noisy. Therefore, we do not includeMozilla in this study. In
the future, we will consider to clean the data and includeMozilla projects for evaluation.

– Oracle dataset: The oracle dataset is collected based on the existing techniques of
collecting bug inducing changes (Kim et al. 2006). To minimize the threats of the data
quality problem, we conduct manual validation of the collected data. However, it is still
possible that, the oracle dataset may be incomplete or imprecise. In the future, we will
investigate the techniques to improve the quality of the oracle dataset.

– Empirical evaluation: In this work, we conduct experiments to evaluate the effec-
tiveness of the proposed technique. Although there are some evidences that the bug
inducing changes are useful for developers, the usefulness of our technique should be
ultimately evaluated by real developers in practice. In the future, we will conduct user
study to further evaluate our technique.

9 Related Work

9.1 Crash Analysis

Recently, researchers have been dedicated to analyzing the software crashes in large-scale
systems. Microsoft developed WER (Windows Error Reporting System) (Glerum et al.
2009) to automatically collect crash reports from end users to facilitate the debugging.
Due to the large number of crash reports received daily, the crash reporting system needs
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Fig. 15 An example that ChangeLocator fails to locate

to organize the duplicate crash reports into “buckets”. Bucketing crash reports has been
proved to be useful in practice according to the ten years’ operation in WER (Glerum et al.
2009). To further improve the accuracy of bucketing, Kim et al. (2011) proposed to lever-
age the similarity of crash graphs to identify duplicate crash reports. Dang et al. (2012)
proposed a method of bucketing duplicate crash reports based on call stack similarity. To
better prioritize debugging efforts, Kim et al. (2011) proposed to predict the top crashes
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when crash reporting systems receive a small number of crashes. To facilitate the
maintenance of crashing faults, Seo and Kim (2012) proposed to predict the recurring
crashes due to incomplete or missing fixes. To improve bug management for crashing
bugs, Wang et al. (2016) proposed an algorithm to locate buggy files for crashes via crash
correlation groups, as well as a method to identify duplicate and related crashing bug reports.

To facilitate the debugging of software crash, many researches have been working on
reproducing crashes. For example, ReCrashJ (Artzi et al. 2008) generates unit tests for
crashes by capturing the state of method arguments. Chronicler (Bell et al. 2013) captures
the non-deterministic inputs and reproduces the crashes. BugRedux (Jin and Orso 2012)
records different kinds of execution data, and reproduces crashes using symbolic analysis.
Cao et al. (2014) records the return values of hard-to-resolve functions, and uses concolic
execution to generate test cases for reproducing crashes. White et al. (2015) proposed to
generate reproducible bug reports for Android application crashes, based on the predefined
natural language descriptions for app features and the user execution profile information.
Moran et al. (2016) proposed an approach to discover the crashes and generate reproducible
bug reports for Android application crashes, which include screenshots and augmented
natural language description steps.

The above work mainly studied the collecting and bucketing crash reports, the prediction
of crash-prone module, and the reproduction of crashes. Our work also focuses on analyzing
software crashes. Different from the above work, we focus on the problem of locating the
crash-inducing changes for crash buckets.

9.2 Bug Localization

Bug localization is one of important steps in debugging, which is often tedious and
non-trivial. In recent years, various bug localization techniques have been proposed.
Spectrum-based bug localization techniques (Abreu et al. 2007; Jones et al. 2002; Liblit et
al. 2003, 2005) statistically analyze the passing and failing execution traces of test cases,
and rank the suspicious statements. Parnin and Orso (2011) conducted a comparative study
on the effectiveness of these techniques by comparing the developers’ debugging time with
and without the ranked list of suspicious statements. Their study showed that, simply exam-
ining faulty statements in isolation may not be sufficient for debugging, and more contexts
should be provided. Besides, most of the existing spectrum-based bug localization tech-
niques require many inputs, such as passing and failing test cases, which are not available in
existing crash reporting systems. IR-based bug localization techniques (Rao and Kak 2011;
Wong et al. 2014; Zhou et al. 2012; Moreno et al. 2014) mainly apply or adapt the informa-
tion retrieval techniques to query the relevant source files based on the textual descriptions
of bug reports. Similar to our work, some of these techniques (Wong et al. 2014; Moreno
et al. 2014) utilize crash stack traces as the input to enhance the performance of bug local-
ization. Wang et al. (2015) investigated the usefulness of these IR-based techniques by
conducting both experimental study and user study. Their study showed that, the quality of
bug reports affect IR-based techniques significantly, and it is not sufficient for developers
to understand and fix the bugs with the results produced by IR-based technique. Both of the
studies in Parnin and Orso (2011) and Wang et al. (2015) showed that, developers expect
more contextual information.

In this paper, we are targeting at locating crash-inducing changes for crashing faults in
large-scale systems with crash reporting systems. As shown in our investigation, developers
consider crash-inducing changes as useful context information for debugging. Besides, our
work only requires source code repository and crash reports, which are easy to obtain in practice.
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9.3 Bug Inducing Changes

Bug inducing change is one of important data for software analysis. To identify that,
Śliwerski et al. (2005) proposed SZZ algorithm based on the bug-fixing changes. Kim et al.
(2006) further improved SZZ algorithm by removing non-semantic changes and outlier
fixes. da Costa et al. (2017) proposed a framework to evaluate the results generated by SZZ-
based algorithms. Based on the bug inducing changes, researchers conducted many studies.
For example, Śliwerski et al. (2005) performed a study on finding out the most bug-prone
day. Kim et al. (2006) used the bug inducing changes to analyze the micro pattern changes in
source code. Kamei et al. (2013) and Kim et al. (2008) proposed to predict whether a com-
mitted change is bug-prone based on the bug inducing changes. An et al. (2017) predicted
whether a committed change would induce a crash in the future.

Our work is relevant to the above work, since we leverage the bug inducing changes in
the training process. Unlike the above work, our goal is to locate crash-inducing changes for
crash buckets. Different from change-based defect prediction work (Kamei et al. 2013; Kim
et al. 2008) that cannot tell which bug a bug-prone change is responsible for, our technique
can provide a suggested list of changes for a specific crash bucket.

10 Conclusion and Future Work

In this paper, we described an empirical study on crash-inducing changes. Based on the
results of our empirical study, we propose ChangeLocator, an automatic tool for locating the
crash-inducing changes. To evaluate the effectiveness of ChangeLocator, we conducted an
experimental study on six release versions of NetBeans project. Our evaluation results show
that, using ChangeLocator, we can locate 44.7%, 68.5%, and 74.5% of crash buckets by
examining only top 1, 5 and 10 changes. We also compared our technique with the state-of-
the-art bug localization technique Locus. The evaluation results showed that ChangeLocator
outperforms the Locus significantly, with the improvement in MAP ranging from 58.8% to
219.7% and the improvement in MRR ranging from 54.3% to 227.6%.

In the future, we will evaluate ChangeLocator using more projects, including indus-
trial projects. We will also conduct user study to evaluate the usefulness and effectiveness
of ChangeLocator in practice. Moreover, we will consider to combine ChangeLocator
with other bug localization techniques to locate bugs at a finer granularity. Also, applying
ChangeLocator to automated program repair is an interesting research direction to explore.

Our tool and the experimental data used in this paper can be accessed via Git with the
following url: https://bitbucket.org/rongxin/changelocator-dataset.git
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