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ABSTRACT
Combinatorial interaction testing (CIT) is a popular approach to

detecting faults in highly configurable software systems. The core

task of CIT is to generate a small test suite called a t-way covering

array (CA), where t is the covering strength. Many meta-heuristic

algorithms have been proposed to solve the constrained covering

array generating (CCAG) problem. A major drawback of existing

algorithms is that they usually need considerable time to obtain a

good-quality solution, which hinders the wider applications of such

algorithms. We observe that the high time consumption of existing

meta-heuristic algorithms for CCAG is mainly due to the proce-

dure of score computation. In this work, we propose a much more

efficient method for score computation. The score computation

method is applied to a state-of-the-art algorithm TCA, showing sig-
nificant improvements. The new score computation method opens

a way to utilize algorithmic ideas relying on scores which were not

affordable previously. We integrate a gradient descent search step

to further improve the algorithm, leading to a new algorithm called

FastCA. Experiments on a broad range of real-world benchmarks

and synthetic benchmarks show that, FastCA significantly outper-

forms state-of-the-art algorithms for CCAG algorithms, in terms of

both the size of obtained covering array and the run time.

CCS CONCEPTS
• Computing methodologies→Heuristic function construc-
tion; • Software and its engineering→ Software testing and
debugging; Search-based software engineering.
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1 INTRODUCTION
With the increasing requirement on customizable software, modern

software systems usually have many configurable options. These

highly-configurable systems allow users to control the behaviors of

the softwares by setting the options to meet their demand. Besides,

the cost of development may be reduced significantly by reusing

the systematic components among different variants.

These benefits are in the wake of challenges for the validation

of highly-configurable softwares, as failures may be caused by

some combinations of options [18, 37]. Testing highly-configurable

softwares is an intractable task, mainly because the number of con-

figurations grows exponentially with the number of options. Due

to the combinatorial explosion, the enumeration methods become

futile, and there is an urgent need to develop more effective and

practical methods. As a response to this significant requirement,

the combinatorial interaction testing (CIT) approach has emerged

as a popular paradigm for detecting option-combination faults of

configurable software system. By using combinatorial optimization

techniques to sample configurations from the configuration space,

CIT can significantly reduce the number of required test cases.

CIT has proved useful in many domains such as software product

line [15], graphical user interfaces [39], concurrent programs [19]

among others. Particularly, a recent research suggests that CIT is

more desirable when system faults are hard to detect [34].

The core task of CIT is to generate a test suite as small as possible,

by which any t-way combination of values of options is covered at

least once. Such a test suite is called a t-way covering array (CA),

where t is the covering strength. Empirical studies suggest that

most of the failures in highly-configurable systems are caused by
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the interaction of a limited number of t options, usually between

two and six [11, 18]. These failures can be revealed efficiently and

effectively by a t-way CA.

In most real-world systems, there are hard constraints on the per-

missible combinations of values of the options. For the sake of the

accuracy and the efficiency of the testing process, these constraints

must be taken into account when generating CA [5]. This gives

rise to the constrained covering array generating (CCAG) problem,

which aims at generating CA of minimum size while satisfying all

constraints. CCAG is NP hard, and popular practical algorithms for

solving CCAG can be classified into three main groups: constraint-

encoding algorithms [1, 36, 40], greedy algorithms [4, 21, 35] and

meta-heuristic algorithms [8–10, 16, 25].While constraint-encoding

algorithms can effectively solve 2-way CCAG, they typically fail to

solve 3-way CCAG. Greedy algorithms focus on generating CAs

in a short time, and the size of CA is not its major consideration.

Meta-heuristic algorithms can generate better solutions than other

approaches, but they usually need considerable time to obtain a

good-quality solution, which hinders the wider applications of such

algorithms.

This work is dedicated to more efficient meta-heuristic algo-

rithms for CCAG, which can provide good solutions within much

shorter time compared to state-of-the-art CCAG algorithms. Meta-

heuristic algorithms for CCAG [8–10, 16, 25] are based on a method-

ology named local search. We discover that the computation of the

scores of candidate operations, which are used to guide the search

to select the operation to perform, occupies a very high proportion

of the time consumption of a local search algorithm for CCAG.

According to our investigation on the TCA algorithm [25], this per-

centage is usually more than 50% and can reach up to 90% for some

instances when solving 3-way CCAG. The heavy score computa-

tion makes the algorithms slow; and a more serious consequence is

that some good algorithmic ideas cannot be used in meta-heuristic

algorithms for CCAG, due to the slow score computation.

Thus, to develop efficient local search solvers for CCAG, it is

critical to develop an efficient method for score computation. In this

work, we propose a method that is much faster than the previous

methods for score computation. The proposed method is based on

an important observation that only two kinds of value combinations

have influence on the scores, and thus only these combinations need

to be considered in calculating scores. We apply our novel score

computation method to a state-of-the-art meta-heuristic algorithm

TCA[25]. The experimental results on real-world benchmarks show

that the runtime to find CAs of the same size is significant reduced

by using our score computation method. In addition, with regard

to the size of CAs found within 1 000 seconds, the new algorithm

TCA+ improves TCA on 8 out of 26 real-world benchmarks, and

performs equally on the rest of the benchmarks.

The new score computation method opens a way to utilize algo-

rithmic ideas relying on scores whichwere not affordable previously.

Based on the new score computation method, we develop a new

algorithm named FastCA. It improves TCA by introducing a gra-

dient descent search step before the two-mode search. Unlike the

greedy mode of TCA that only considers modifications related to

one randomly chosen uncovered combination of values, the gradi-

ent descent step considers all uncovered combinations and applies

the best modification if it can reduce the number of uncovered

t-way combinations. We conduct experiments on a broad range

of real-world benchmarks and synthetic benchmarks to compare

FastCA with the state-of-the-art algorithms for CCAG. Experimen-

tal results show that FastCA is faster and obtains better solutions

than previous heuristics. Specifically, with the time budget of 1 000

seconds, FastCA finds CAs of much smaller size than other algo-

rithms on most instances, and worse on none instance. Besides,

even the cutoff time for FastCA is set to 100 seconds, it still finds

better or equal CAs than those found by other algorithms in 1 000

seconds. It means that FastCA can generate CA smaller than state-

of-the-art meta-heuristic solvers using run time similar to greedy

algorithms.

2 PRELIMINARIES
A system under test (SUT) is defined as a pair M = ⟨P,C⟩, where
P is a set of options and C a set of constraints on the permissible

combinations of values of the options in P . For each option pi ∈ P ,
the set of feasible values is denoted as Vi . To define the CCAG

problem, we need to introduce the notions of tuple and test case.

Definition 2.1. Given a SUT M = ⟨P,C⟩, a tuple τ = {(pi1 , vi1 ),
(pi2 , vi2 ), . . . , (pit , vit )} is a set of pairs, which implies that option

pi j ∈ P takes the value vi j ∈ Vi j . A tuple of size t is called a t-tuple.

Definition 2.2. Given a SUT M = ⟨P,C⟩, a test case tc is a tuple
that covers all options in P , that is, it is a complete assignment to P .
The value of option p in tc is denoted by tc[p].

For a SUT M = ⟨P,C⟩, a tuple or test case is valid if, and only if,

it satisfies all constraints in C . A tuple τ is covered by a test case tc
if, and only if, τ ⊆ tc , that is, the options in τ take the same values

as in tc .

Definition 2.3. Given a SUT M = ⟨P,C⟩, a t-way covering array
CA(M, t) is a set of valid test cases, such that any valid t-tuple is
covered by at least one of the test case of CA, where t is called the

covering strength of CA. The size of a CA α is defined as the number

of the test cases contained, and it is denoted by |α |.

Definition 2.4. Given a SUT M = ⟨P,C⟩ and covering strength t ,
the CCAG problem is to find a t-way CA of minimal size.

2.1 Preliminaries on Local Search for CCAG
As almost all meta-heuristic algorithms for CCAG are based on

local search, we also provide the basic concepts used in local search

for solving CCAG. Local search CCAG algorithms work with partial

covering arries, which are defined as follows.

Definition 2.5. Given a SUT M = ⟨P,C⟩, a t-way partial covering
array (partial-CA) α is a set of valid test cases. A tuple is covered

by a partial-CA α iff it is covered by at least one test case of α , and
the cost of α , denoted as cost(α), is defined as the number of valid

t-tuples not covered by α .

Typically, a local search algorithm for CCAG starts from an initial

(partial) CA, and tries to improve the solution by performing small

modifications iteratively. Normally, each step of the procedure is to

change one option value of a test case, which is formally defined as

an operation.
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Algorithm 1: Local search for CCAG

Input: SUT M ⟨P,C⟩, covering strength t
Output: CA α∗

1 α ← Initialization();

2 while The termination criterion is not met do
3 if cost(α) = 0 then
4 α∗ ← α ;

5 α ← partial-CA of smaller size;

6 opSet ← candidate operations;

7 forall op ∈ opSet do
8 Calculate score(op);

9 modify α by op ∈ opSet chosen according to socre(op);

10 return α∗;

Definition 2.6. Given a partial-CA α , an operation, denoted as

op(tc,pi ,vi ), modifies the value of one option pi of a test case tc
to be vi , where tc ∈ α is the test case to be modified, pi ∈ P is the

option and vi ∈ Vi is the new value for pi .

Definition 2.7. Given a partial-CA α and an operation op, the
score of the operation is defined as score(op) = cost(α) − cost(α ′),
where α ′ is the resulting partial-CA after applying op to α .

The framework of local search algorithms for CCAG is presented

in Algorithm 1. At the beginning, a partial-CA α is generated as

starting point for the search procedure (Line 1). During each step of

the search procedure (Line 2–10), it first checks whether the cost of

α equals to zero. If a CA is found, the algorithm attempts to find CA

of smaller size (Line 3–5). Otherwise, it collects candidate operation,

and calculates score for each of them (Line 7–9). After that, one of

the operation op chosen according to socre(op) is applied to α .

2.2 Benchmarks and Experiment Methodology
In order to study the algorithms, we carry out extensive experiments

and report the results in tables. In this subsection, we introduce the

benchmarks, the experiment setup and reporting methodology for

better understanding the experiment parts.

The experiments are conducted on a broad range of bench-

marks including real-world instances and synthetic instances. These

benchmarks have been widely used to evaluate the performance of

CCAG algorithms [5, 6, 9, 10, 16, 17, 25, 28].

• Real-world: This benchmark contains six real-world in-

stances. Five of them are extracted from nontrivial real-world

systems, including Apache, Bugzilla, GCC, SPIN-S and SPIN-

V. These instances were introduced by Cohen et al. [5, 6]
1
.

The other instance is TCAS, which was first introduced by

Kuhn and Okun [17]
2
. It is a traffic collision avoidance sys-

tem from ‘Siemens’ suite.

• IBM: This benchmark contains 20 real-world instances gen-

erated by or for IBM customers [31]
3
. These instances cover

1
http://cse.unl.edu/~citportal/public/tools/casa/benchmarks.zip

2
http://cse.unl.edu/~myra/artifacts/HHSA/downloads/ICSE15_HHSA_Benchmarks.

tar.gz

3
https://researcher.watson.ibm.com/researcher/files/il-ITAIS/ctdBenchmarks.zip

a broad range of application including banking systems,

telecommunications, healthcare, etc.

• Synthetic: There are 30 instances in this benchmark. They

were generated synthetically from the characteristics found

in the five real-world instances. These instances were gener-

ated by Garvin et al.[9, 10]
1
.

All experiments were conducted on a computing cluster consist-

ing of computing nodes equipped with dual 56-core, 2.00GHz Intel

Xeon E7-4830 CPUS, 35 MB L3 cache and 256 GB RAM, running

Ubuntu (version: 16.04.5 LTS). Because meta-heuristic algorithms

are usually randomized, for each algorithm we performed 10 inde-

pendent runs per instance with a cutoff time (set to 1 000 seconds).

All runs were conducted using runsolver (version: 3.3.4) [30] to
measure CPU time and GNU Parallel [32] to manage processes.

For each algorithm on each instance, we report the smallest

size (‘min’) and the averaged size (‘avg’) found by the respective

algorithm over 10 runs. In addition, for each algorithm on each

instance, we report the running time (‘time’) required for finding

the optimized CAs averaged over 10 runs, and all running times

were measured in CPU seconds. If an algorithm failed to find a CA

during all 10 runs, we report size as ‘–’.

For each instance, the results in bold indicate the best perfor-

mance in our comparisons. Also, we use boldface to indicate the in-

stances where our proposed algorithms are statistically outperform

all its competitors w.r.t. CA size, according to Wilcoxon rank-sum

test (α = 0.05).

3 SCORE COMPUTATION
In this section, we first show that score computation is the most

time-consuming in meta-heuristic algorithms and then propose a

novel light-weight method for score computation.

3.1 Time Consumption of Previous Score
Computation

The state-of-the-art performance for solving CCAG is achieved

by the meta-heuristic algorithms, such as the two-mode heuris-

tic algorithm TCA and the simulated annealing based algorithm

HHSA and CASA. These algorithms are all based on the local search

methodology and the search is guided with the scores of operations.

A commonly used method for computing scores of operations is

as follows. For an operation op(tc,p,v), as score(op) measures the

change on the number of uncovered valid t-tuples, a straightforward

way to compute score(op) is to check each tuple τ involving (p,v).
If the checked tuple τ becomes covered from uncovered by the

operation op, it contributes +1 to score(op); if τ becomes uncovered

from covered, it contributes -1 to score(op).
The above method for score computation is widely used in pre-

vious local search algorithms for CCAG. However, this process

is of high complexity and is very time-consuming in practice. A

simple analysis shows that, there are

(k−1
t−1

)
tuples to be checked for

computing the score of only one operation. For instance, consider

the real-world instance apache with k = 172 options, and suppose

the required covering strength t = 3, then we need to check 14 535

tuples for computing an operation’s score. What is worse, in some

modes of local search such as the greedy mode of TCA, the number
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Table 1: The averaged time consumption (in seconds) of
score computation on each benchmark, running TCA on
each instance with time budget 1000 seconds.

t-way Real-world IBM Synthetic

2 345.38 250.72 380.82

3 770.52 549.12 856.89

4 774.02 548.1 878.27

of candidate operations, for which score computation is required,

is proportional to the size of CA.

To show that the above score computation is time-consuming,

we carry out experiments to give empirical evidences about the

time cost of score computation in TCA, a state-of-the-art meta-

heuristic algorithm for solving CCAG. We run TCA to solve CCAG

with covering strength between 2 to 4 on three benchmarks (which

will be introduced in Section 3.3), with time budget limited to 1 000

seconds and one run for each instance. The instances that can not

be solved within the time budget (appears in 4-way CCAG, see

Table 7 for reference) are not considered in the statistics.

The statistics (Table 1) show that the time consumption of score

computation occupies a major part of the time budget, and increases

with the covering strength. In particular, for the Real-world bench-

mark, it cost 34.5%, 77.1% and 77.4% of the time budget respectively

for 2, 3 and 4 way covering strength. Therefore, improving the

efficiency of score computation is critical to the performance of

local search algorithms for solving CCAG.

3.2 A Lightweight Method for Score
Computation

In this subsection, we propose a lightweight method for score com-

putation. Before describing the method, we first give a definition

and a lemma.

Definition 3.1. Given a t-way partial-CA α , a valid t-tuple τ is

δ -covered if, and only if, there is exactly δ test cases in α cover it. A

0-covered tuple is indeed an uncovered tuple.

An important fact is that, only uncovered and 1-covered tuples

are related to the score of an operation. This observation is formally

described below.

Lemma 3.2. For an operation op(tc,p,v), only uncovered and 1-
covered t-tuples may have impact to score(op), and any δ -covered
t-tuple with δ > 1 has no impact to score(op).

Proof. For a tuple τ = {(pi1 ,vi1 ), (pi2 ,vi2 ), . . . , (pit ,vit )}, there
are three possibility to consider.

(1) τ is uncovered tuple. If, and only if, the following equation

holds,

vi j =

{
tc[pi j ] pi j , p

v pi j = p
(1)

τ will be covered by tc after apply op, contributing 1 to score(op).
(2) τ is 1-covered tuple. If it is not covered by tc , then the coverage

of it is unchanged after the applying op. Otherwise, if (p,v ′) ∈ τ
and v ′ , v , then applying op will make τ uncovered, contributing

−1 to score(op).
(3) τ is δ -covered tuple with δ > 1. Suppose the tuple τ is covered

by a set of test cases T , and |T | = δ > 1. If tc < T , obviously, the

Table 2: The averaged number of uncovered tuples and 1-
covered tuples over the procedure of TCA when solving 3-
way CCAG in 1 000 seconds.

Instance #Prev_check
Uncovered 1-covered

#num % #num %

apache 14535 1.35 0.01 16.39 0.11

bugzilla 1275 2.42 0.19 27.44 2.15

gcc 19503 1.59 0.01 17.15 0.09

spins 136 1.34 0.99 8.81 6.48

spinv 1431 1.36 0.1 8.23 0.58

tcas 55 1 1.82 2.9 5.27

Total 36935 9.06 0.02 80.92 0.22

Banking1 6 1.25 20.83 2.63 43.83

Banking2 91 2.17 2.38 9.11 10.01

CommProtocol 45 1.57 3.49 2.99 6.64

Concurrency 6 1.8 30 2.4 40

Healthcare1 36 1.22 3.39 3.38 9.39

Healthcare2 55 1.59 2.89 6.26 11.38

Healthcare3 378 1.48 0.39 9.85 2.61

Healthcare4 561 1.27 0.23 11.55 2.06

Insurance 78 1 1.28 2.35 3.01

NetworkMgmt 28 1 3.57 2.1 7.5

ProcessorComm1 91 1.4 1.54 7.06 7.76

ProcessorComm2 276 1.89 0.68 12.01 4.35

Services 66 1.1 1.67 3.84 5.82

Storage1 3 1 33.33 1.54 51.33

Storage2 6 1.69 28.17 4.35 72.5

Storage3 91 1.08 1.19 2.82 3.1

Storage4 171 1.01 0.59 4.62 2.7

Storage5 231 1.01 0.44 3.94 1.71

SystemMgmt 36 2.16 6 6.58 18.28

Telecom 36 1.25 3.47 3.32 9.22

Total 2291 27.94 1.22 102.7 4.48

operation op has no influence on the coverage of τ ; if tc ∈ T , then τ
either remains δ -covered or becomes (δ−1)-covered tuple (the proof
is similar to (2)). Since δ > 1, the tuple τ remains covered before

and after the operation, and thus has no impact to score(op). □

Now we describe the lightweight method for score computation.

For an operation op(tc,p,v), its score is computed by the following

procedure.

Lightweight_score_computation(operation op)

(1) calculatemake(op), which is the number of uncovered tuples

that will become 1-covered after applying op.
(2) calculate break(op), which is the number of 1-covered tuples

that will become uncovered after applying op.
(3) score(op) =make(op) − break(op).

By this method, the time complex of calculating score is reduced

fromO(
(k−1
t−1

)
) toO(|C0 |+ |C1 |), whereC0 andC1 is the set of uncov-

ered and 1-covered tuples respectively. |C0 | and |C1 | are typically

much smaller than

(k−1
t−1

)
.

We run TCA on real-world instances with time budget 1 000

seconds to count the averaged number of uncovered and 1-covered

tuples in one procedure for score computation. The results on 3-way

CCAG are presented in Table 2, where “#Prev_check” denotes the

number of tuples need to be checked for computing an operation’s

score in the previous score computation method. When compared

to the number of tuples need to be checked in the previous score

computation method (i.e.,

(k−1
t−1

)
), the numbers of uncovered and 1-

covered tuples are several orders smaller. On average,
|C0 |

(k−1t−1)
= 0.02%
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Table 3: TCA+ vs TCA on the Real-world and IBM bench-
marks

Instance
TCA+ TCA

timer
min(avg) time min(avg) time

apache 144(145.4) 786.99 154(156.1) 871.68 212.57

bugzilla 48(48) 2.45 48(48) 9.96 2.45

gcc 77(79.4) 522.88 82(83.6) 802.79 310.79

spins 80(80) 1.31 80(80) 3.55 1.31

spinv 198(200.2) 23.38 198(200.2) 152.27 23.38

tcas 400(400) 0.03 400(400) 0.1 0.03

Banking1 45(45) 0.28 45(45) 0.28 0.28

Banking2 30(30) < 0.01 30(30) < 0.01 < 0.01
CommProto. 41(41) 1.25 41(41) 1.4 1.25

Concurrency 8(8) < 0.01 8(8) < 0.01 < 0.01
Healthcare1 96(96) 0.03 96(96) 0.04 0.03

Healthcare2 51(51.9) 153.7 52(52) 129.18 80.29

Healthcare3 153(154.4) 236.42 154(154.8) 283.19 80.53

Healthcare4 239(239.7) 505.01 240(241.2) 651.75 145.7

Insurance 6851(6851) 2.3 6851(6851) 10.07 2.3

NetworkMg. 1100(1100) 0.28 1100(1100) 0.55 0.28

Proc.Comm1 106(108) 336.58 108(108.5) 273.87 151.97

Proc.Comm2 126(126.5) 285.46 126(126.6) 516.91 218.1

Services 842(848.5) 174.59 842(848.5) 218.69 174.58

Storage1 25(25) < 0.01 25(25) < 0.01 < 0.01
Storage2 54(54) < 0.01 54(54) < 0.01 < 0.01
Storage3 222(222) 3.53 222(222) 7.68 3.53

Storage4 910(910) 10.58 910(910) 34.68 10.58

Storage5 1708(1709.7) 658.86 1710(1712.3) 796.41 327.39

SystemMg. 45(45) 0.64 45(45) 0.88 0.64

Telecom 120(120) 0.07 120(120) 0.12 0.07

Avg_time 183.31 67.23

and
|C1 |

(k−1t−1)
= 0.22% for the Real-world benchmark, and these figures

are 1.22% and 4.48% for the IBM benchmark.

3.3 Application to Existing Algorithms
The lightweight score computation method is a generic method

that can be used in developing any local search algorithm for CCAG

that employs scores. Since it can accelerate the existing algorithms,

a natural question is whether this acceleration leads to performance

improvement. Here, we present the first research question.

RQ1: Can the lightweight score computation method im-
prove existing meta-heuristic algorithms for CCAG?

As the state of the art for solving CCAG is acquired by TCA, we
apply the lightweight score computation method to re-implement

TCA, and the obtained solver is named TCA+.
We first measure the speedup of TCA+ over TCA, by comparing

the number of steps executed with the cutoff time of 1 000 seconds

for all instances ( Figure 1). On 31 out of 56 instances, TCA+ executes
5 times more steps than TCA with the same cutoff time. Dramatic

speedups are observed on a considerable portion of instances: 10×

for 22 instances and 100× for 6 of them.

To study whether the acceleration leads to performance improve-

ment, we conduct experiments to compare the two solvers’ perfor-

mance in terms of solution quality and run time on all benchmarks.

The experimental results on 3-way CCAG are presented in Table 3

and 4. After using the score calculation method proposed, TCA+
outperforms the original TCA on all instances. On the metrics of

the size of CAs, TCA+ is better than TCA on 8 out of 26 real-world

instances and 19 out of 30 synthetic instances, while worse than

TCA on none instance. For the instance where TCA+ and TCA find

Table 4: TCA+ vs TCA on the Synthetic benchmark

Instance
TCA+ TCA

timer
min(avg) time min(avg) time

Syn_1 249(251.6) 487.89 254(255.6) 847.41 78.52

Syn_2 139(140.4) 414.98 141(143.7) 469.11 56.9

Syn_3 51(51) 9.38 51(51) 37.39 9.38

Syn_4 80(80) 7.13 80(80) 40.02 7.13

Syn_5 335(337.2) 790.35 410(413.9) 991.75 301.11

Syn_6 96(96) 17.63 96(96) 137.35 17.63

Syn_7 25(25) 230.22 25(25.3) 353.54 81.21

Syn_8 262(263.1) 643.76 268(270.9) 873.29 95.64

Syn_9 60(60) 2.69 60(60) 8.09 2.69

Syn_10 288(292) 546.12 323(329) 992.59 152.94

Syn_11 279(280.2) 410.68 284(285.5) 909.77 82.81

Syn_12 217(218.8) 645.2 237(238.8) 980.72 145.76

Syn_13 180(180) 151.61 180(181.7) 732.81 106

Syn_14 216(216) 27.5 216(216) 159.48 27.5

Syn_15 150(150) 18.37 150(150) 117.57 18.37

Syn_16 96(96) 16.29 96(96) 98.77 16.29

Syn_17 218(219) 580.21 228(230.7) 923.09 124.63

Syn_18 289(291.6) 459.05 301(303.8) 971.85 143.27

Syn_19 332(335.3) 743.75 486(492.4) 989.92 498.84

Syn_20 415(418.4) 752.5 501(511.6) 991.69 232.06

Syn_21 216(216) 15.96 216(216) 88.39 15.96

Syn_22 144(144) 10.77 144(144) 45.96 10.77

Syn_23 36(36) 1.16 36(36) 4.49 1.16

Syn_24 293(295.4) 489.29 299(303.1) 919.7 92.75

Syn_25 360(362.8) 596.54 393(395) 993.33 129.26

Syn_26 164(165.9) 538.64 167(169.5) 773.54 74.21

Syn_27 180(180) 7.32 180(180) 45.08 7.32

Syn_28 380(383.7) 856.02 503(506.5) 989.24 479.19

Syn_29 125(125) 146.94 125(125.4) 708.87 126.15

Syn_30 68(68.7) 353.31 69(69.7) 432.07 52.66

Avg_time 554.23 106.27

CAs of the same size, TCA+ is always faster than TCA. To further

show the efficiency of the score computation method, we report the

running time (‘timer ’) averaged over 10 runs when TCA+ find CAs

of the same size with TCA on each instances. As shown in the last

column in Table 3 and Table 4, TCA+ uses much less time to find

CAs found by TCA in 1 000 seconds. For example, on the apache

instance, the running time needed for TCA+ is only 212.57 seconds

while TCA needs 871.68 seconds. More significant improvements

can be seen on the synthetic benchmarks.

It is also worthy to remark that, since most meta-heuristic algo-

rithms for CCAG use scores to guide the search, our method for

score computation is also useful to improve other algorithms.

4 THE FASTCA ALGORITHM
Thanks to the lightweight score computation method, some algo-

rithmic strategies that are not affordable previously now can be

implemented with affordable time consumption. In this section,

we further improve the TCA algorithm by integrating a gradient

descent mode, which relies heavily on score computation, leading

to a new algorithm called FastCA.
TCA works between the random mode and greedy mode. While

the randommode is for better exploring the search space, the greedy

mode focuses on finding good operations to reduce uncovered tu-

ples of the partial-CA. However, TCA searches for good operations

(w.r.t. scores) within a limited space. It only considers operations

involving one selected uncovered tuple. Therefore, there is a consid-

erable probability that the score of the chosen operation is negative,
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Figure 1: The number of steps of TCA+ and TCA for solving
3-way CCAG on real-world and synthetic benchmarks.

indicating an increment on the number of uncovered tuples, even

when there are other operations of positive score.

The considerations above suggest that the exploitation (corre-

sponding to operations with positive scores) of the search in TCA
should be enhanced. According to research on local search, when-

ever there is an operation leading to a better objective function, it

should be taken [23, 26]. A reason that TCA does not adopt such

strategies, might be that the original score computation in TCA
is quite time-consuming, making it not affordable to check many

uncovered tuples. Thanks to the lightweight score computation

method proposed in this work, the dilemma no longer exists, mak-

ing it possible to integrate exploitation strategies to improve the

algorithm. This results in a new meta-heuristic algorithm called

FastCA.

4.1 The Description of FastCA
The pseudo-code of the FastCA algorithm is described in Algo-

rithm 2. In the beginning, FastCA calls an initialization function

to construct a CA, which serves as a starting point for the search

procedure (Line 1). We use a well-known greedy CCAG solverACTS
[21] in this procedure. While the ACTS solver does not aim at CAs

of optimal size, it can generate a CA of reasonable size quickly.

After the initialization, FastCA executes a loop of iterative modi-

fication steps until the termination criterion is met (it is time budget

usually). Whenever the algorithm successfully finds a CA α of size

n which covers all valid tuples, it removes one test case from α and

goes on to search for a CA of size n−1 (Line 4–6). During the search
process, there are three important components in FastCA, including
the gradient descent procedure, the greedy mode searching, and

the random mode searching.

As the name indicates, in the gradient descent search procedure,

FastCA employs a gradient descent step according to the scores

of operations. It checks all uncovered valid t-tuples to search for

descent operations (i.e. with positive scores). For each uncovered

valid t-tuples, the algorithm calculates the score of each operation

which can be performed (subject to the tabu condition) to cover the

Algorithm 2: The FastCA algorithm

Input: SUT M ⟨P,C⟩, covering strength t
Output: CA α∗

1 α ← Initialization();

2 α∗ ← α ;

3 while The termination criterion is not met do
4 if there is no uncovered tuple then
5 α∗ ← α ;

6 Remove one row from α ;

7 α ← Gradient_descent();

8 if Gradient_Descent is not successful then
9 if With probability p then

10 α ← Random_Mode();

11 else
12 α ← Greedy_Mode();

13 return α∗;

tuple. If there are any operation with positive score, then the one

with the greatest score is executed.

If there is no such operation, FastCA executes a two-mode search

process similar to TCA. With a probability p, it works in the ran-

dom mode; otherwise (with a probability 1 − p), it works in the

greedy mode. Unlike the gradient descent search procedure, only

one uncovered tuple is considered in this process. One can refer to

the description on TCA in the related work (Section 6) for details

of the two-mode search process.

4.2 Gradient Descent Function
The gradient descent function of FastCA employs the tabu search

heuristic [25, 29]. Before describing the details, we give several defi-

nitions and notations below for better understanding the algorithm.

Definition 4.1. Given a partial-CA α and a test case tc of α , an
option p is a tabu option of tc if and only if tc[p] has been changed

during the last T search steps, where T is the tabu tenure. For

simplification, we say (tc,p) is of tabu status.

Definition 4.2. Given a partial-CA α and an uncovered tuple τ ,
an operation op(tc,p,v) is feasible if and only if it meets all these

criteria: (tc,p) is not of tabu status, the resulting tc is valid and

covers τ . The set of feasible operations w.r.t. an uncovered tuple τ
is denoted by opSet(τ ).

The pseudo-code of the gradient descent search is described in

Algorithm 3. Different from the greedy mode of TCA, it checks all
the uncovered valid t-tuples under the current partial-CA α . For
each tuple τ , the score of each feasible operation is calculated using

the lightweight score computation method proposed in section 3.

Each time a better score is found, bestScore is updated accordingly,

and the responding operation is recorded (Line 5–6).

After all the scores related to uncovered valid tuples have been

checked, if bestScore > 0, the operation bestOp of which the score

is bestScore is applied to α (Line 8–9). Otherwise, the gradient

descent process fails, and α stays unchanged.

217



Towards More Efficient Meta-heuristic Algorithms for Combinatorial Test Generation ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Algorithm 3: Gradient_descent
Input: partial-CA α , a set of uncovered valid t-tuples S
Output: partial-CA α

1 bestScore ← −∞;

2 forall τ ∈ S do
3 forall op ∈ opSet(τ ) do
4 Calculate score(op);

5 if score(op) > bestScore then
6 bestScore ← score(op);

7 bestOp ← op;

8 if bestScore > 0 then
9 α ← Execute bestOp to α ;

10 return α

5 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the

efficiency and effectiveness of FastCA by comparing it with 4 state-

of-the-art algorithms for CCAG. Since 2-way CCAG can be solved

effectively by existing algorithms [36], the experiments focus on

3-way CCAG. In addition, although 4-way CA can reveal more

failures of systems, it remains very difficult for current solvers

and few related work report results on it. In our work, we also

investigate the performance of current state-of-the-art algorithms

for solving 4-way CCAG, and compare that with the performance

of FastCA.

5.1 Research Questions
We present the research questions before describing the details of

experiments.

RQ2: How does FastCA compare against current state-of-
the-art algorithms for 3-way CCAG?

The size of CA implies the number of test case needed to validate

the correctness of a system. Therefore, to find CAs as small as

possible is the primary goal of CCAG. In our experiments, we set

the time limit to 1 000 seconds and compare FastCA against its

competitors.

RQ3: Can FastCA outperform the current state-of-the-art
algorithms for 3-way CCAG with a smaller time budget?

Meta-heuristic algorithms can find smaller CAs than greedy

algorithms, with more time consumption. Greedy algorithms can

generate CAs in a short time, but the size of CAs are usually larger.

FastCA is proposed with expectation that it combines the advantage

of greedy algorithms and meta-heuristic algorithms. Thus, we are

interested in whether FastCA is efficient enough to provide good

solutions in short time. In our experiments, we limit the runtime of

FastCA to 100 seconds, and compare it against other solvers with

runtime limited to 1 000 seconds.

RQ4: What is the performance of FastCA and its competi-
tors for 4-way CCAG?

It is well recognized that 4-way CCAG solving remains a chal-

lenge for existing CCAG solvers, due to the huge size of search

space. In order to demonstrate the generality and the superiority

of FastCA, we conduct experiments to compare FastCA with its

competitors for solving 4-way CCAG.

5.2 State-of-the-art Competitors
In this subsection, we compare FastCAwith 4 state-of-the-art CCAG

algorithms, i.e., TCA [25], HHSA [16], CASA [9] and ACTS [38].

Unlike the former three meta-heuristic algorithms,ACTS is a greedy
algorithm. It can construct CAs in a short time, while the size is

generally larger than meta-heuristic algorithms. As it is used in the

initialization of FastCA, we also included ACTS in the competition

to evaluate the improvement of FastCA’s search procedure. These

solvers are all available online.

TCA4
is an efficient two-mode meta-heuristic algorithm. It works

between the greedy mode and the random mode. As reported in

the literature[25], TCA can generate CAs of obviously smaller size

than its competitors.

HHSA5
is a hyper-heuristic search algorithm. It works in a simu-

lated annealing framework, using a reinforcement learning agent to

dynamically choose different strategies without active supervision.

CASA6
is a simulated annealing algorithm which is improved

from previous algorithms by using a reorganized search space based

on the CCAG problem structure.

ACTS7 is an in-parameter-order algorithm, which can handle

constraints efficiently. While the former three solvers are written

in C++, ACTS is developed using Java.

5.3 Experimental Setup
The experimental setup used in this section is the same as the one

described in Section 2.2. In the last row of the tables, we report the

number of instances where FastCA finds better or equal sized CA

than its competitors. In addition, in order to show the efficiency of

FastCA, we also evaluate FastCAwith the cutoff time of 100 seconds

per run for solving 3-way CCAG on all testing benchmarks.

5.4 Experimental Results
In this subsection, we present the experimental results to answer

each research question mentioned in Section 5.1.

Results on comparing FastCA against its competitors for
3-way CCAG (RQ2): Tables 5 and 6 show the results of FastCA
(Column ‘FastCA (1000s)’) and its competitors for 3-way CCAG.

When the cutoff time is limited to 1 000 seconds, as can be seen

from the tables, FastCA significantly outperforms other solvers on

both the real-world and synthetic benchmarks. On the metrics of

CA size, FastCA finds better solutions than the best competitor TCA
on 29 out of 56 instances, and finds equal sizes on the remaining

ones.

For the Real-world and IBM benchmarks, we focus on the ‘diffi-

cult’ instances which need more than 100 seconds averaged runtime

for all solvers excepting the greedy algorithm ACTS. On these in-

stances, the size of CAs found by FastCA are usually much smaller

than its competitors. For example, on the apache instance, the av-

eraged size found by FastCA is 134.7, while the number for TCA
4
https://github.com/jkunlin/TCA

5
http://www0.cs.ucl.ac.uk/staff/Y.Jia/projects/cit_hyperheuristic/downloads/Comb_

Linux_64.tar.gz

6
http://cse.unl.edu/~citportal/

7
http://www.flossic.com/ACTS/ACTS2.92.zip
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Table 5: Comparing FastCA against state-of-the-art competitors for 3-way CCAG on the Real-world and IBM benchmarks. The
running time is measured in CPU second. The cutoff time is set to 100s for FastCA, and 1000s for the other solvers

Instance
FastCA (1000s) FastCA (100s) TCA (1000s) ACTS (1000s) HHSA (1000s) CASA (1000s)
min (avg) time min (avg) time min (avg) time min time min (avg) time min (avg) time

apache 133 (134.7) 716.77 141 (142.7) 79.12 154 (156.1) 871.68 173 7.92 – >1000 245 (247.9) 920.36

bugzilla 48 (48) 17.35 48 (48) 17.35 48 (48) 9.96 68 0.44 60 (60.9) 481.55 61 (64.6) 36.38

gcc 75 (76.8) 561.74 79 (80.6) 75.44 82 (83.6) 802.79 108 9.48 – >1000 134 (140) 943.47

spins 80 (80) 1.17 80 (80) 1.17 80 (80) 3.55 98 0.37 80 (85.7) 59.55 94 (100.5) 7.14

spinv 195 (196) 415.45 196 (197.4) 65.26 198 (200.2) 152.27 286 1.27 – >1000 224 (233.1) 734.92

tcas 400 (400) 0.47 400 (400) 0.47 400 (400) 0.1 405 0.32 400 (400) 337.88 400 (404.1) 4.27

Banking1 45 (45) 4.11 45 (45) 4.11 45 (45) 0.28 58 2.07 45 (45) 9.9 45 (46.2) 0.09

Banking2 30 (30) 0.66 30 (30) 0.66 30 (30) < 0.01 39 0.44 30 (30) 1.1 30 (30.4) 0.35

CommProto. 41 (41) 16.68 41 (41) 16.68 41 (41) 1.4 49 3.22 41 (41) 76.94 41 (42.2) 0.25

Concurrency 8 (8) 0.31 8 (8) 0.31 8 (8) <0.01 8 0.51 8 (8) 7.51 8 (8) <0.01
Healthcare1 96 (96) 0.8 96 (96) 0.8 96 (96) 0.04 105 0.65 96 (96) 53.61 96 (96.6) 0.3

Healthcare2 50 (50.9) 225.47 50 (51.4) 26.74 52 (52) 129.18 67 1.26 51 (52.1) 23.5 53 (55.1) 6.16

Healthcare3* 151 (151.5) 325.85 151 (152.4) 48.69 154 (154.8) 283.19 209 0.92 177 (186.9) 373.89 170 (175) 237.96

Healthcare4 238 (239) 417.3 240 (240.7) 56.61 240 (241.2) 651.75 294 1.21 320 (346.667) 725.21 278 (286.7) 835.15

Insurance 6851 (6851) 1.74 6851 (6851) 1.74 6851 (6851) 10.07 6866 0.54 – >1000 7027 (7156.4) 770.29

NetworkMg. 1100 (1100) 1.14 1100 (1100) 1.14 1100 (1100) 0.55 1125 0.59 1100 (1100) 440.68 1124 (1136.8) 5.72

Proc.Comm1* 104 (104.8) 160.59 105 (105.3) 32.23 108 (108.5) 273.87 163 0.63 114 (117.6) 90.78 117 (120.7) 111.51

Proc.Comm2 125 (125.6) 189.36 125 (126.2) 53.81 126 (126.6) 516.91 161 1.64 140 (148.2) 572.5 140 (145) 236.73

Services* 813 (815.2) 685.53 829 (834.2) 81.4 842 (848.5) 218.69 963 10.35 840 (860) 789.42 856 (894) 464.39

Storage1 25 (25) 2.05 25 (25) 2.05 25 (25) <0.01 25 1.52 25 (25) 15.53 25 (25) < 0.01
Storage2 54 (54) 0.09 54 (54) 0.09 54 (54) < 0.01 74 0.03 54 (54) 15.9 54 (55.8) 0.02

Storage3 222 (222) 3.43 222 (222) 3.43 222 (222) 7.68 239 1.54 224 (225.1) 675.16 241 (245.8) 1.83

Storage4 910 (910) 3.62 910 (910) 3.62 910 (910) 34.68 990 0.76 960 (960) 853.39 926 (951.6) 723.84

Storage5 1705 (1706.9) 445.17 1707 (1710.3) 72.45 1710 (1712.3) 796.41 1879 2.93 – >1000 1877 (1958.3) 971.23

SystemMg. 45 (45) 1.65 45 (45) 1.65 45 (45) 0.88 60 0.49 45 (45.2) 16.6 47 (48.3) 0.3

Telecom 120 (120) 0.57 120 (120) 0.57 120 (120) 0.12 126 0.53 120 (120) 12.4 120 (120.4) 0.37

#Better (#Euqal) of FastCA 10 (16) 24 (2) 16 (10) 24 (2)

is 156.1, for CASA is 247.9; HHSA fails to solve apache within the

time limit. The gap between different solvers is even larger on the

synthetic benchmark as can be seen from Table 6.

Since FastCA uses the greedy algorithm ACTS as its initialization,
we study how much the search procedure can reduce the size of

CAs. As shown in the tables, FastCA generates CAs of significant

smaller size than ACTS on almost all the instances. Besides, for 11

out of 26 real-world instances and 24 out of 30 synthetic instances,

it reduces the size of CAs found by ACTS by more than 20 test cases.

In particular, on the Services instance, it reduces the size from 963

to 813, totally 150 test cases.

These results indicate that FastCA advances the state of the art

for solving the 3-way CCAG problem.

Results on comparing FastCA, with considerably less cut-
off time, against its competitors for 3-way CCAG (RQ3): The
results are presented in Tables 5 and 6 (Column ‘FastCA (100s)’).
FastCAwith the cutoff time of 100 seconds still finds better or equal

sizes of CAs than all its competitors with the 10 times longer cutoff

time on all testing instances. Besides, the gaps between FastCA and

its competitors observed in RQ2 also appear here. Particularly, on

the gcc instance, FastCA finds CAs of averaged size 80.6 in 75.44

seconds, while TCA finds 83.6 in 802.79 seconds and CASA finds

140 in 943.47 seconds. Overall, the runtime for FastCA is much

shorter than other solvers for achieving solutions with better or

equal size.

When it comes to the comparison between FastCA and ACTS,
it is shown that 100 seconds is sufficient to dramatically reduce

the size of CAs. Averagely, more than 30 test cases are reduced

by the search procedure of FastCA. Therefore, if a test case takes

more than three seconds to run in the test process, then FastCA
is preferred. For the situation where CA is repeatedly used, such

as regression testing, the advantage of FastCA in practice is more

obvious.

Results on the performance of FastCA and its competitors
for 4-way CCAG (RQ4): Table 7 presents the results of 4-way

CCAG solving on the Real-world and IBM benchmarks; the results

on the Synthetic benchmarks are available online
8
. Since the HHSA

algorithm available online cannot solve 4-way CCAG, we do not

report its result here.

It is shown that FastCA outperforms other algorithms on all

instances. It can generate smaller CAs in shorter time than its com-

petitors. For many instances, such as spinv, Healthcare4 and Stor-

age4, the sizes of CAs found by FastCA is several hundreds or even

thousands smaller than those found by other solvers, indicating the

superiority of FastCA on 4-way CCAG.

Discussion on the results of FastCA for 2-way CCAG: For
comprehensive evaluation, we summarize the empirical results for

2-way CCAG here. On all instances, FastCA finds CAs of smaller

or equal size than its competitors. In particular, it finds better CAs

than TCA on 15 instances. To achieve solution of equal size, FastCA
is also faster than other solvers on nontrivial instances.

Discussion on the effectiveness of the components under-
lying FastCA: In order to illustrate the contribution of gradient

descent search to FastCA, we remove this component from FastCA,
resulting in an alternative version named FastCA-. Experimental

results on real-world benchmarks for 3-way CCAG show that with

the gradient descent search, FastCA generates smaller CAs on 10

8
https://github.com/jkunlin/fastca
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Table 6: Comparing FastCA against state-of-the-art competitors for 3-way CCAG on the Synthetic benchmarks. The running
time is measured in CPU second. The cutoff time is set to 1000s for all solvers.

Instance
FastCA (1000s) FastCA (100s) TCA (1000s) ACTS(1000s) HHSA(1000s) CASA(1000s)

min (avg) time min (avg) time min (avg) time min time min (avg) time min (avg) time

Syn_1 243 (244.6) 471.01 247 (248.3) 81.69 254 (255.6) 847.41 293 3.3 – >1000 358 (366.3) 899.32

Syn_2 133 (134) 498.59 136 (138) 72.75 141 (143.7) 469.11 174 1.67 – >1000 174 (182.8) 800.84

Syn_3 51 (51) 7.18 51 (51) 7.18 51 (51) 37.39 71 0.36 59 (59.5) 146.55 59 (61.1) 2.76

Syn_4 80 (80) 5.49 80 (80) 5.49 80 (80) 40.02 102 0.72 100 (101.7) 560.71 96 (103.6) 88.82

Syn_5 330 (332) 573.81 338 (339.3) 87.73 410 (413.9) 991.75 386 13.76 – >1000 1068 (1069.3) 947.22

Syn_6 96 (96) 10.36 96 (96) 10.36 96 (96) 137.35 119 1.22 – >1000 118 (122.6) 624.67

Syn_7 25 (25) 23.34 25 (25.1) 13.27 25 (25.3) 353.54 35 0.44 26 (26.3) 107.35 27 (27.8) 4.91

Syn_8 256 (257.5) 479.04 260 (262.4) 89.28 268 (270.9) 873.29 326 4.19 – >1000 389 (402.5) 962.69

Syn_9 60 (60) 4.84 60 (60) 4.84 60 (60) 8.09 84 0.81 80 (80) 0.14 70 (76.6) 384.72

Syn_10 277 (280.5) 520.4 287 (288.9) 93.92 323 (329) 992.59 329 9.42 – >1000 795 (798.1) 947.41

Syn_11 270 (271.8) 338.9 272 (274.6) 62.37 284 (285.5) 909.77 318 3.79 – >1000 396 (408.8) 870.45

Syn_12 216 (216) 214.18 217 (217.9) 84.54 237 (238.8) 980.72 263 6.94 – >1000 367 (390.5) 953.29

Syn_13 180 (180) 32.35 180 (180) 32.35 180 (181.7) 732.81 200 5.45 – >1000 277 (290.7) 944.55

Syn_14 216 (216) 9.24 216 (216) 9.24 216 (216) 159.48 244 2.69 – >1000 261 (270.4) 885.73

Syn_15 150 (150) 7.56 150 (150) 7.56 150 (150) 117.57 173 1.97 – >1000 165 (169.2) 542.73

Syn_16 96 (96) 23.97 96 (96) 23.97 96 (96) 98.77 117 2.58 – >1000 119 (123.5) 756.91

Syn_17 216 (216.1) 429.06 216 (218.9) 77.1 228 (230.7) 923.09 265 6.39 – >1000 338 (351.9) 929.21

Syn_18 280 (282) 521.37 284 (287.6) 88.85 301 (303.8) 971.85 344 7.24 – >1000 446 (449) 931.68

Syn_19 316 (318) 527.65 330 (331.7) 96.81 486 (492.4) 989.92 373 21.58 – >1000 – >1000

Syn_20 411 (412.1) 623.28 418 (421.2) 94.78 501 (511.6) 991.69 463 12.82 – >1000 1026 (1050.9) 873.88

Syn_21 216 (216) 7.39 216 (216) 7.39 216 (216) 88.39 235 3.05 – >1000 243 (250.1) 956.52

Syn_22 144 (144) 5.16 144 (144) 5.16 144 (144) 45.96 164 2.07 – >1000 162 (170.7) 521.59

Syn_23 36 (36) 2.62 36 (36) 2.62 36 (36) 4.49 48 1.02 38 (39.5) 155.17 37 (39.2) 2.68

Syn_24 284 (285.7) 430.78 286 (290.1) 88.37 299 (303.1) 919.7 341 4.75 – >1000 448 (462.2) 966.87

Syn_25 350 (352.4) 539.08 357 (358.6) 89.48 393 (395) 993.33 404 7.55 – >1000 566 (589.9) 972.05

Syn_26 160 (161.9) 685.26 163 (164.7) 78.1 167 (169.5) 773.54 207 2.98 – >1000 216 (220.1) 871.81

Syn_27 180 (180) 5.33 180 (180) 5.33 180 (180) 45.08 204 2 – >1000 194 (201.6) 579.78

Syn_28 367 (369.9) 756.4 379 (382.5) 96.4 503 (506.5) 989.24 420 20.25 – >1000 – >1000

Syn_29 125 (125) 39.91 125 (125) 39.91 125 (125.4) 708.87 154 4.67 – >1000 186 (192) 920.3

Syn_30 66 (66.9) 418.63 68 (68.3) 53.39 69 (69.7) 432.07 100 1.25 – >1000 82 (88.8) 455.48

#Better (#Equal) of FastCA 19 (11) 30 (0) 30 (0) 30 (0)

out of 26 instances than FastCA-. For the other 16 instance, FastCA
and FastCA- generate CAs of the same size, and most of them are

solved within 10 seconds.

We study the importance of the lightweight score computation by

comparing FastCA with its alternative FastCAp implemented with

the previous score computation method on 26 real-world instances

of 3-way CCAG. 15 instances are easy for both algorithms - they all

find the same sized CAs in 10 seconds. FastCA finds better solutions

than FastCAp on the rest 11 instances, and takes less time (100 to

200 seconds less) on 9 of them.

Indeed, a premise of employing the gradient descent search to

improve the algorithm is the lightweight score computation. To

give evidence on this, we remove gradient descent search from

FastCAp, leading to FastCAp-. Experiments on 3-way CCAG show

that the gradient descent component only improve on 3 instances

while decrease the performance on 8 instances on the metric of size

of CAs. It makes FastCAp worse than FastCAp-.

5.5 Threats to Validity
It seems that the cutoff time setting is a threat to validity to our

experimental results, since 1000 seconds might not be enough to

exploit the performance of HHSA and CASA. However, compared

to the current best-known solutions for most instances reported

in literature we could found, 1 000 seconds (even 100 seconds) are

enough for FastCA to achieve much better solutions. In fact, as

reported in the papers ofHHSA [16] and CASA [10], althoughHHSA

and CASA cost much more time (even more than 10 hours on some

instances), the solutions found are still much worse than FastCA.
Besides, we run HHSA and CASA on real-world benchmarks with

the cutoff time of 5 hours, and FastCA (using the cutoff of only 1000

seconds) still significantly outperforms such results.

Since TCA is the main competitor in our experiment, we hence

follow the experimental setup in TCA paper [25] and use 1000

seconds as the cutoff.

6 RELATEDWORK
Practical algorithms for solving CCAG can be roughly categorized

into three main groups: constraint-encoding algorithms, greedy al-

gorithms and meta-heuristic algorithms. Constraint-encoding algo-

rithms focus on efficient methods to encode CCAG into constrained

optimization problem, such as SAT and MaxSat problems [1, 36].

While constraint-encoding algorithms are effective for solving 2-

way CCAG, it required improvements to handle 3-way CCAG [36].

Greedy algorithms can usually generate CAs in a short time.

Although the size of CAs is not necessarily small, greedy algorithms

show its superior in some scenarios where highly optimized test

suite is not the primary consideration. One-test-at-a-time (OTAT )
and in-parameter-order (IPO) are two main approaches of greedy

algorithms. The well-known AETG algorithm is the first one using

the OTAT strategy [4], and since then a number variants were

proposed to improve its performance [2, 3, 7, 33, 35, 40]. The IOP
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Table 7: Comparing FastCA against state-of-the-art competitors for 4-way CCAG on the Real-world and IBM benchmarks. The
running time is measured in CPU second. The cutoff time is set to 1000s for all solvers.

Instance
FastCA (1000s) TCA (1000s) ACTS (1000s) CASA (1000s)
min (avg) time min (avg) time min time min (avg) time

apache – > 1000 – > 1000 – > 1000 – > 1000

bugzilla 166 (166.7) 670.13 170 (170.9) 834.17 242 (242) 3.8 271 (278.5) 910.57

gcc – > 1000 – > 1000 – > 1000 – > 1000

spins 308 (308) 10.77 311 (317.1) 428.88 393 (393) 0.44 360 (366.9) 781.91

spinv 1105 (1110.7) 878.74 1634 (1653.2) 979.58 1631 (1631) 26.37 – > 1000

tcas 1200 (1200) 6.26 1200 (1200) 32.55 1435 (1435) 0.43 1228 (1244) 820.78

Banking1 139 (139) 5.36 139 (139) < 0.01 139 (139) 0.9 139 (142.3) 0.03

Banking2 71 (71) 3.45 71 (71) 6.97 96 (96) 0.35 74 (77.4) 31.57

CommProtocol 83 (83) 8.53 83 (83) 2.92 97 (97) 1.28 84 (85.1) 2.45

Concurrency 8 (8) < 0.01 8 (8) < 0.01 8 (8) 0.3 8 (8) < 0.01
Healthcare1 300 (300) 1.93 300 (300) 1.42 341 (341) 0.43 301 (303.4) 6.18

Healthcare2 166 (168.1) 733.72 172 (173.4) 456.59 220 (220) 0.65 184 (187.4) 123.55

Healthcare3 737 (741.2) 659.84 766 (770.4) 916.78 1004 (1004) 2.23 1147 (1161.3) 957.1

Healthcare4 1332 (1341) 775.18 1728 (1740.5) 997.19 1644 (1644) 5.93 2557 (2598.5) 956.8

Insurance 75361 (75361) 159.06 76234 (76270.9) 998.19 75764 (75764) 2.35 972594 (10623174) 968.31

NetworkMgmt 5610 (5610) 336.54 5610 (5610) 500.86 6267 (6267) 0.61 5944 (5974.9) 970.08

ProcessorComm1 487 (490.4) 486.82 491 (495) 577.39 670 (670) 0.52 574 (581.9) 915.21

ProcessorComm2 584 (585.6) 405.9 591 (593.4) 867.96 744 (744) 2.69 840 (860.5) 941.5

Services 6404 (6406.9) 875.72 6418 (6422.2) 928.33 6855 (6855) 7.92 7081 (7227.3) 943.63

Storage1 25 (25) 1.84 25 (25) < 0.01 25 (25) 0.7 25 (25) 0.02

Storage2 162 (162) 17.68 162 (162) 0.15 195 (195) 0.02 162 (163.6) 0.33

Storage3 570 (570) 63.69 570 (570) 304.76 752 (752) 0.84 1085 (1085) 35.52

Storage4 5506 (5508.2) 927 6625 (6695.5) 999.14 6636 (6636) 2.15 9278 (9370.4) 947.33

Storage5 11004 (11020.7) 977.27 14065 (14086.4) 993.27 13292 (13292) 17.63 – > 1000

SystemMgmt 135 (135) 2.64 135 (135) 2 152 (152) 0.36 136 (140) 6.25

Telecom 360 (360) 2.3 360 (360) 2.62 392 (392) 0.38 365 (365.4) 19.96

#Better (#Equal) of FastCA 12 (14) 21 (5) 21 (5)

strategy was first proposed by Lei and Tai [22] to generate 2-way

CAs and was later generalized to t-way CAs [20].

Meta-heuristic algorithms aim at reducing the size of CAs with

a price of more time consumption. Most state-of-the-art solvers

for CCAG, such as TCA [25], HHSA [16] and CASA [9], can be

categorized into this group. The main procedure of these algorithms

is searching for CAs of iteratively smaller size. There are many

strategies have been proposed for improving the effectiveness of the

search procedure, including tabu search [29], hyper heuristics [16],

simulated annealing and t-set replacement [9]. These strategies are

used to guide the search to more promising areas, usually based on

the scores of candidate operations.

The TCA algorithm uses two-mode heuristics in its searching

procedure. The greedy mode of TCA devotes to decreasing the

number of uncovered tuples, while the random mode provides

opportunities to escape from local optimal and better explore the

search space. In the random mode of TCA, it randomly deletes one

test case from the current partial CA, and generates a new one to

cover the pre-selected uncovered tuples. When it is in the greedy

mode, TCA takes one uncovered tuple randomly and choose the

best operation to cover it based on the score calculated. As revealed

in this work, the score computation costs a primary part of time

budget and can be significantly reduced by our lightweight method.

Search based software engineering [12] is a research area that

reformulates software engineering problems as optimization prob-

lems and then resorts to mete-heuristics algorithms for solving.

There are many studies of practical problems, such as test case gen-

eration [27], program refactoring [14], prioritization for regression

testing [24], and module clustering [13], which all belong to this

area of research. In this sense, our work also falls under the research

area of search based software engineering.

7 CONCLUSION
The constrained covering array generating (CCAG) problem is a

challenging problem in combinatorial test generation. A promising

approach to this NP hard problem is to find good solutions by meta-

heuristic algorithms. A big issue in meta-heuristic algorithms for

CCAG is the heavy time consumption of score computation, which

not only accounts for the low speed of the algorithms, but also

hinders the applications of many good algorithmic ideas relying on

scores. This paper addressed this issue by proposing a lightweight

method for score computation. We applied it to re-implement a

state-of-the-art meta-heuristic algorithm TCA and finds significant

speedup as well as performance improvements on real-world and

synthetic benchmarks. Additionally, the lightweight score computa-

tion method opens a door to make more algorithm ideas affordable

and thus more elaborate algorithms can be developed. We took a

step of this direction by integrating a gradient descent component

to TCA, with the lightweight score computation method, leading

to a new meta-heuristic algorithm called FastCA. Experiments on

a broad range of real-world and synthetic benchmarks show that

FastCA is faster and finds better solutions than existing algorithms,

which remains justified even when the cutoff time (100s) for FastCA
is set to 10% of that (1000s) for the competitors.
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