
DeepPerf: Performance Prediction for Configurable
Software with Deep Sparse Neural Network

Huong Ha
The University of Newcastle

Callaghan, Australia

huong.ha@uon.edu.au

Hongyu Zhang
The University of Newcastle

Callaghan, Australia

hongyu.zhang@newcastle.edu.au

Abstract—Many software systems provide users with a set
of configuration options and different configurations may lead
to different runtime performance of the system. As the combi-
nation of configurations could be exponential, it is difficult to
exhaustively deploy and measure system performance under all
possible configurations. Recently, several learning methods have
been proposed to build a performance prediction model based on
performance data collected from a small sample of configurations,
and then use the model to predict system performance under a
new configuration. In this paper, we propose a novel approach
to model highly configurable software system using a deep
feedforward neural network (FNN) combined with a sparsity
regularization technique, e.g. the L1 regularization. Besides, we
also design a practical search strategy for automatically tuning
the network hyperparameters efficiently. Our method, called
DeepPerf, can predict performance values of highly configurable
software systems with binary and/or numeric configuration
options at much higher prediction accuracy with less training
data than the state-of-the art approaches. Experimental results
on eleven public real-world datasets confirm the effectiveness of
our approach.

Index Terms—software performance prediction, deep sparse
feedforward neural network, highly configurable systems, spar-
sity regularization

I. INTRODUCTION

Many large and complex software systems are highly con-

figurable, i.e., they provide a set of configuration options for

users to select. These options allow users to customize the

system to meet their specific requirements, hence, improving

the usability and reusability of the system. Different configu-

rations may lead to different quality attributes (non-functional

properties). Among the quality attributes, performance (such

as response time or throughput) is one of the most important

quality attributes as it directly affects user experience. It is

necessary to understand the performance of a system under a

certain configuration, before the system is actually configured

and deployed. This helps users make rational decisions in

configurations and reduce performance testing cost. However,

we cannot exhaustively deploy and measure system perfor-

mance under all possible configurations as even a small-scale

configurable system already results in an exponential number

of configurations.

In recent years, researchers have proposed to measure the

performance of a system with only a limited set of configu-

rations (sample), build a performance prediction model, and

then use the model to predict the performance of the system

under new configurations (population) [19, 21, 37, 40, 42, 43,

48, 55]. In this way, performance can be predicted before a

variant of the system is configured and deployed. The difficulty

here is to predict system performance with high accuracy

while utilizing a small sample. As it takes time and effort

to configure the system and collect performance data, it is

desirable that the sample size is kept minimum.

The challenge for building a performance prediction model

is in the interactions between configuration options (features),

i.e. a particular combination of features causes an unexpected

behaviour on the system performance while their individual

presences do not [8, 34, 42]. To address this challenge, an

approach, namely SPLConqueror, aims to learn the influences

of individual configuration options and their interactions from

the differences among the measurements of the sample [41–

43]. Several sampling heuristics and experimental designs

for configuration options are combined with the suggested

learning method to achieve good prediction accuracy. A strong

point of SPLConqueror is that it can derive performance-

influence models from binary-numeric configurable software

systems, i.e. using the prediction models, users can understand

how individual features and their interactions influence the

system performance. A disadvantage of this method is related

to its flexibility as it might not always be possible to measure

the performance values of configurations that meet certain

pre-defined coverage criteria. Besides, SPLConqueror usually

requires more sample than other approaches as their focus

is to make the influences of configuration options and their

interactions explicit [21, 37, 41].

Another approach is to consider the performance prediction

problem as a non-linear regression problem and apply a statis-

tical learning method, e.g. the Classification And Regression
Trees (CART) technique, to find this non-linear model [19].

Recently, it was further extended by combining with various

resampling and machine learning hyperparameter tuning tech-

niques and became a more data-efficient performance learning

algorithm (DECART) [21]. That is, compared to CART, DE-
CART uses less measurement effort to learn and validate a

performance-prediction model [21]. However, at present, both

CART and DECART can only predict configurable software

systems with binary configuration options.

Lately, Zhang et al. [55] addressed this challenge by for-

1095

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)

1558-1225/19/$31.00 ©2019 Crown
DOI 10.1109/ICSE.2019.00113

mulating the software performance function as a Boolean

function. Using Fourier transform of the Boolean function,

the task of estimating the performance function becomes

estimating its associated Fourier coefficients from a small

sample. Although the algorithm can derive a sample size that

guarantees a theoretical boundary of the prediction accuracy,

the size of sample required to achieve a desired accuracy

is still very large (sometimes even more than the whole

population of the system), especially for a relatively small

system [55]. Similar to CART/DECART, this approach works

only on binary configurable software systems.

Inspired by the strengths and weaknesses of all the state-of-

the-art methods, in this paper, we aim to derive an approach

that can model all types of configurable software systems (i.e.

binary and binary-numeric systems) and predict system per-

formance at a high accuracy using a small sample. Similar to

CART/DECART, to address the problem of feature interaction,

we also consider the software performance prediction problem

as a non-linear regression problem, i.e. the performance is a

non-linear function of the configuration options. However, in

our work, we suggest to use a deep feedforward neural network

(FNN) with non-linear hidden layers to approximate this non-

linear performance function. A deep FNN is a multilayer stack

of computational units (neurons), with the first layer taking

the input, the last layer producing the output and the middle

layers (hidden layers) connecting the input and the output

layer [18]. The idea of approximating performance function

by a deep FNN is possible, as it has been shown that FNNs

with hidden layers provide a universal framework, i.e. an

FNN with a linear output layer and at least one hidden layer

with some specific activation functions and sufficient number

of neurons can approximate various function classes, from

Boolean functions [4, 46] to continuous real-valued functions

[5, 11, 15, 22, 23, 28].

The first challenge when using deep FNNs to model

software performance is that a deep neural network usually

requires a lot of training data to achieve high prediction

accuracy, however, for the software performance prediction

problem, we have very limited number of measurements.

To address this problem, we need to incorporate some prior

knowledge about software performance into the network archi-

tecture. A good way to do this is to tell the network how the

parameters look like, i.e. whether they follow any particular

distribution or have any special properties. For configurable

software systems, it has been observed that the software

performance functions are usually very sparse (i.e. only a small

number of configurations and their interactions have significant

impact on system performance) [24, 27, 40, 42]. Based on this

observation, to model software performance, we suggest to use

a deep sparse FNN. To construct a deep sparse FNN, we will

combine a normal deep FNN with a sparsity regularization

technique, e.g. the L1 regularization [49].

The second challenge with using deep sparse FNNs is that

they require many hyperparameters (e.g. the number of lay-

ers, number of neurons, regularization hyperparameters, etc).

These hyperparameters need to be tuned optimally so that the

network achieves high prediction accuracy. In practice, these

hyperparameters can be optimized either manually by human

experts or automatically by some tuning methods. As it is

not always possible to find an expert to tune hyperparameters

every time we need to predict software performance, automatic

tuning is needed. However, even with the use of an efficient

automatic tuning method, it usually takes hours or days to find

an optimal hyperparameter set since the hyperparameter search

space (i.e. the space contains all the possible combinations of

the hyperparameters) is very huge. To overcome this chal-

lenge, in this work, we also propose a hyperparameter search

strategy for our deep sparse FNN such that it takes much less

computation time while still obtains a good hyperparameter

set that leads to higher prediction accuracy.

We have implemented the proposed performance prediction

approach as a tool DeepPerf and evaluated it on eleven real-

world configurable software systems with up to 1031 configu-

rations and from different application domains, e.g. compiler,

web server, database library, video encoders, etc. The experi-

mental results show that for most of the systems, DeepPerf can

achieve much higher prediction accuracy with smaller sample

sizes compared to the state-of-the-art methods. For binary

software systems (i.e., the systems with binary configuration

options), DeepPerf statistically outperforms DECART (a state-

of-the-art method for predicting the performance of binary

software systems) on 3 out of 6 systems for all sample sizes

and performs similarly on the other 3 systems. For binary-

numeric software systems (i.e., the systems with both binary

and numeric configuration options), DeepPerf outperforms

SPLConqueror (a state-of-the-art method for predicting the

performance of binary-numeric software systems) on 4 out

of 5 systems for all sample sizes.

In summary, our contributions are as follows:

1) We are the first to propose to use a deep sparse FNN to

model highly configurable software systems with binary and/or

numeric configuration options.

2) We suggest a practical hyperparameter search strategy for

the deep sparse FNN such that it can automatically find a good

set of hyperparameters to achieve high prediction accuracy

within a short time.

3) We implement our proposed method, namely DeepPerf,
and extensively evaluate our method on eleven real-world

configurable software systems with various sample sizes. The

results show that for most of the systems, DeepPerf outper-

forms other state-of-the-art approaches (i.e. it achieves much

higher prediction accuracy with less training data).

4) We empirically compare different types of regularized

deep FNNs and other common machine learning methods (e.g.

SVM) to show that a deep sparse FNN is a better choice to

predict the performance of configurable software systems.

II. BACKGROUND

A. The formulation of software performance prediction prob-
lem

Generally, a performance function of a software system with

n configuration options is a function from configuration space

1096

TABLE I
EXAMPLE OF A CONFIGURABLE SOFTWARE SYSTEM AND ITS

PERFORMANCE VALUES.

x1 x2 x3 . . . x8 x9 x10 x11 f(x)
1 1 0 . . . 0 50 5 2 7319.56
1 1 0 . . . 1 50 1 3 9600.67
1 1 1 . . . 0 50 5 4 7374.26
1 1 0 . . . 1 50 1 2 9632.08
.
1 0 0 . . . 0 55 0 5 13256.9
1 0 0 . . . 0 53 3 2 9832.78

to a performance measurement:

f(x) = f(x1, x2, . . . , xn) : X→ R.

where

• xi (i = 1, n) is the variable that stores the value of the

configuration option ith. It can either be a Boolean value

indicating if the configuration option is (de)selected or a

real value in the value range for that configuration option.

• X is the Cartesian product of the domains of all the

configuration options.

The objective is to predict the software performance value

f(x) of any new configuration vector x given a small sample

of size m: {xi, f(xi)}, i = 1, 2, . . . ,m.

Table I shows an example of a software performance func-

tion f(x1, . . . , xn) and its configuration space. The software

system has 11 configuration options in which 8 options take

binary values and 3 options take numeric values. In total,

the system has 2304 valid configurations. Measuring the time

performance of all these configurations is difficult since it

requires a lot of time and effort. To overcome this challenge,

researchers propose to measure only the performance values

of a limited number of configurations (sample), then build a

prediction model from these data to predict the performance

values of all configurations (population). The challenge here

is to use only a small sample while still be able to predict the

performance of all other configurations in the population with

a high accuracy.

B. The L1 regularization

The L1 regularization technique was first introduced by Tib-

shirani [49] for linear regression with independent Gaussian

noise, which is called Least Absolute Shrinkage and Selection

Operator (LASSO). The idea is to add to the least squares

loss function a penalty term that is constructed from the sum

of the absolute values of the parameters, i.e. the L1 norm

of the parameters. By adding this penalty term to the loss

function, the sum of the absolute values of the parameters is

encouraged to be small. In practice, it has been frequently

observed that L1 regularization can cause many parameters

to be equal to zero, which makes the parameter vector sparse

[33]. Nowadays, L1 regularization is not only applied in linear

regression, but also in other models such as logistic regression

[33] or neural network [17, 51].

C. Hyperparameter Tuning

For any machine learning model, there are variables that

determine the model structure or decide how the network is

trained, which are called hyperparameters. For example, for

neural networks, the hyperparameters are the number of lay-

ers, number of neurons/layer, regularization hyperparameter,

learning rate, etc. These hyperparameters need to be chosen

accurately for the machine learning model to achieve a high

prediction accuracy. The problem of identifying a good set of

hyperparameters, η, is called hyperparameter optmization [7].

The general idea is to choose some trial points {η(1), η(2), . . . }
from the hyperparameter space, evaluate the network perfor-

mance on a validation dataset with these trial points, and pick

the η(i) that has the smallest prediction error. The critical step

in hyperparameter optimization is to choose the set of trials

{η(1), η(2), . . . } effectively [7]. There are several widely used

approaches to choose this set of trials from the hyperparameter

space: grid search, random search [7], bayesian optimization

[44], etc. In reality, the hyperparameter optimization (tuning)

process is usually very time consuming as the hyperparameter

space is huge and many trials are needed to find an optimal

hyperparameter set.

III. A DEEP SPARSE FEEDFORWARD NEURAL NETWORK

FOR SOFTWARE PERFORMANCE PREDICTION

In this section, we describe in detail the design choices

when using neural network to model performance values of

configurable software systems, and from there, we propose

a neural network architecture that can predict software per-

formance values using a small random sample with high

prediction accuracy. Besides, we also suggest a practical

hyperparameter search strategy to automatically find a good

set of hyperparameters within a short time.

A. The design of the deep neural network

1) Design Rationale: The main consideration when select-

ing the architecture of an FNN for a specific problem is

choosing the depth (i.e. the number of hidden layers) and

the width (i.e. the number of neurons per layer). Since our

approach is to use an FNN to represent performance function

of software system, we are concerned with the question

whether we should choose a shallow FNN (network with one

hidden layer and a large number of neurons per layer) or a

deep FNN (network with a large number of hidden layers and

a small number of neurons per layer).

As stated in the universal approximation theorem [11, 23,

28], a shallow FNN having one linear output layer and one

hidden layer with enough neurons and a suitable activation

function (e.g. sigmoid, ReLU) can approximate any continuous

function from one finite dimensional space to the other at any

level of accuracy. However, to achieve a high level of accuracy,

in the worst case, the number of neurons needed for a shallow

FNN with one single hidden layer is an exponential number of

the inputs [5]. For example, representing Boolean performance

function using Fourier learning [55] can be considered similar

to using a shallow FNN with one hidden layer and a large

1097

Fig. 1. The proposed L1 regularized feedforward neural network for config-
urable software performance prediction. The inputs of the network are the n
configuration options of the software system and the output of the network is
the performance value.

number of neurons per layer (2n neurons, where n is the

number of configuration options). Unfortunately, in practice,

there is no guarantee we can train such a neural network that

has a very large number of neurons [18]. The reasons are: (1)

the optimization algorithm used might not be able to find the

values of the parameters corresponding to the desired function,

(2) the training algorithm might choose the wrong function

[18]. Besides, training a huge number of parameters costs a

lot of computation time and memory. This is known as the

curse of dimensionality problem.

Deep FNNs, on the other hand, can avoid the curse of

dimensionality that shallow networks encounter [36]. When

using FNNs to approximate functions, for a given upper bound

of the approximation error, shallow FNNs require exponential

more parameters than deep FNNs [13, 29, 53]. Therefore,

for our approach, we propose to use a deep FNN to model

performance values of configurable software systems. Besides,

to make the hyperparameter tuning process easier and faster,

we suggest to fix the number of neurons in each hidden layer

to be the same. By doing this, the complexity of the FNN

will be controlled by only two hyperparamters: the number of

hidden layers and the number of neurons in each hidden layer.
2) The Network Architecture: The overall architecture of

deep FNN for software performance prediction is as follows:

• The input layer has n neurons, where n is the number of

configuration options of the software system needs to be

predicted. The output layer has 1 neuron, which outputs

the performance value of the software system.

• There are L hidden layers (L ≥ 2) and each hidden layer

has NL number of neurons.

• All the hidden layers use a ReLU activation function

while the output layer uses a linear activation function.

Using a linear output layer is required since the perfor-

mance prediction is a regression problem. Meanwhile, the

ReLU is chosen as the activation function of the hidden

layers due to its ability to learn much faster in networks

with many layers compared to other non-linear activation

functions [17, 30].

For this FNN architecture, there are (NL+1)×(n+NLL+1)
trainable parameters. This number depends on n, NL and L,

hence, the network is able to represent more complex functions

when the software system has more configuration options.

B. Reducing network complexity through regularization

1) Selecting the regularization techniques: A challenge in

training the deep FNN architecture described in the previous

subsection is that in reality, we often have very limited amount

of training data as the main purpose of the software perfor-

mance prediction problem is to predict the performance values

from a small sample. With this condition, the model is ill-

posed, meaning that there is an infinite number of parameters

that can obtain a perfect fit to the training data. However, these

parameters normally do not fit well to the new data. One of

the key ideas for solving ill-posed (or overfitting) problems is

to introduce additional information to the network by using a

suitable regularization technique. At present, there are three

most common regularization methods that are used in many

deep learning applications:

1) The L1 regularization. As described in Section II-B, the

idea of L1 regularization is to add to the loss function

a penalty term which is constructed by applying an L1

norm on the parameters [49].

2) The L2 regularization. Similar to L1 regularization, L2

regularization works by adding a penalty term to the loss

function, however, in this case, an L2 norm is being used

to generate the penalty term [50]. L2 regularization is

arguably the most popular technique in machine learning

to combat overfitting.

3) The dropout technique. Dropout technique was specifi-

cally proposed for neural networks [45]. The key insight

is to randomly drop neurons (along with their connec-

tions) from the network during training to prevent the

network to adapt too much to the training data.

To choose a regularization technique that can improve the per-

formance prediction accuracy, we need to select the technique

that is able to utilize the prior knowledge about configurable

software systems.

2) L1-Regularization of the network: For configurable soft-

ware systems, it has been widely observed that even though the

possible number of interactions among configuration options

is exponential, a very large portion of potential interactions

has no influence on the performance of software systems

[24, 27, 40, 42]. This means that the parameters of the neural

network could be very sparse, i.e. only a small number of

parameters have significant impact on the model. Hence, we

suggest to use a regularization technique that enables the FNN

to satisfy this condition, which means that L1 regularization

technique is the best candidate due to its ability to make the

model parameters sparse. Let denote θ as the weights of the

FNN, β as the bias, X as the input data, Y as the output

data and J(θ, β,X, Y) as the loss function of the network.

Applying L1 regularization to the network means changing

the loss function from J(θ, β,X, Y) to:

Jreg(θ, β,X, Y) = J(θ, β,X, Y) + λ‖θ‖1,

1098

where λ denotes the regularization hyperparameters and ‖.‖1
is the L1 norm.

A consideration when using the L1 regularization in deep

FNNs is whether we need to apply regularization to all the

hidden layers in the network. Intuitively, it might increase the

prediction accuracy if we apply L1 regularization to all the

layers and each layer has a different regularization hyperpa-

rameter. Unfortunately, in practice, this process is infeasible.

The reason is that the effectiveness of regularization depends

mostly on the choice of the regularization hyperparameter,

and finding the right regularization hyperparameter for each

layer is difficult, especially when there are many layers in the

network. Alternatively, one can use one global regularization

hyperparameter for all the layers in the network, however, in

this case, the choice of this hyperparameter becomes more

sensitive. A slight increase or decrease in this hyperparameter

can affect the whole model accuracy greatly because this

hyperparameter affects all the layers in the network. When

we have a very limited amount of data for validation, such as

in the case of software performance prediction, this becomes

a weakness since an abnormal segment of validation data can

affect the choice of this hyperparameter, which in turn affects

adversely the prediction performance of the FNN.

Based on these observations, we suggest to only apply L1

regularization to the first hidden layer. Note that in FNNs,

a layer is a function of the layer that preceded it, so by

shrinking some parameters in the first layer to zero, we

actually remove a lot of irrelevant connections in the latter

layers within the network. Therefore, with only one layer to

be regularized, the L1 regularization still has good effect on

the whole network. The proposed L1 regularized deep FNN

for software performance prediction is shown in Figure 1.

C. Efficient Hyperparameter Tuning

For the proposed deep FNN architecture, there are three

hyperparameters that control the complexity of the network:

number of layers, number of neurons/layer, regularization

hyperparameter, and two key hyperparameters that control

the model training process: learning rate, number of epochs.

The hyperparameter space constructed from these five hyper-

paremeters is the Cartesian product of the domains of all

hyperparameters, which is huge. Searching for an optimal

hyperparameter set from this hyperparameter space is com-

putationally expensive as many trials may be required. In this

section, we aim to reduce the hyperparameter searching effort

by: (1) fixing some dependent hyperparameters, (2) deriving a

search strategy to effectively reduce the hyperparameter space.

First, we set some dependent hyperparameters to some fixed

values. Specifically,

• Set the number of neurons/layer, NL, to be a fixed value

(e.g. 128). As discussed in Section III-A, when using

FNN to approximate functions, a deep FNN is more

beneficial. Previous studies also show that the network

depth is what matters most [13, 29, 36]. Therefore, we

choose to fix the number of neurons per layer (NL)

instead of the number of layers (L). We can control the

complexity of the FNN by the number of layers and the

regularization hyperparameter.

• Set the number of epochs to be a fixed value (e.g. 2000).

With this setting, we can control the training process

using the learning rate. This setting is a way to constrain

the training time budget, i.e. the tuning method needs

to find the optimal learning rate given the training time

budget.

Second, we split the sample into two parts: training and

validation, and then use the proposed search strategy below

to find the optimal hyperparameters. Our search strategy

comprises of two steps:

Step 1: Start from a non-regularized FNN with 2 hidden

layers, search for the optimal learning rate of this network

architecture, train the network with this learning rate and

evaluate the prediction error on the validation dataset. Keep

adding more hidden layers to the non-regularized FNN until

the validation error starts to go up, which is the sign when

the FNN starts to overfit. This is the optimal number of

hidden layers for a non-regularized FNN to fit well with

the performance values of the software system. Note that the

optimal learning rate is chosen as the largest value that makes

the training error closest to 0.

Step 2: Use the number of hidden layers found in Step 1,

add a few more layers and search for the optimal learning rate

of this FNN architecture. Finally, add L1 regularization to this

non-regularized FNN and search for the optimal L1 regulariza-

tion hyperparameter. The reason we need to add a few layers

after finding the optimal non-regularized FNN architecture is

that when we apply regularization to a network, the network

needs to be deeper compared to a non-regularized one in order

to achieve high prediction accuracy [18]. We suggest to add 5
more layers based on our empirical experiments with various

configurable software systems.

With this hyperparameter search strategy, the hyperparam-

eter search space is much smaller than the original one.

Specifically, if we denote Dn, Dl, Dr as the search space of

the number of layers L, the learning rate, and the regularization

hyperparameter λ, respectively, the original hyperparameter

search space is DnDlDr. With our proposed search strategy,

the search space will be (DnDl +Dl +Dr), which is much

smaller than the original search space. Note that in each step

of our search strategy, any conventional hyperparameter tuning

method (e.g. grid search, random search, bayesian optimiza-

tion, etc.) can be used to find the optimal hyperparameters.

D. Training of the network

In this section, we describe some technical details we

utilized in order to train our proposed model effectively. These

details are critical in achieving the high prediction accuracy

of our approach.

• Loss function: We choose the loss function to be the mean

square errors between the real output and the predicted

output as this is the most commonly used regression loss

function in machine learning.

1099

• Input/Output/Weights normalization: To make regulariza-

tion and hyperparameter tuning method work effectively,

we normalize the input and the output of the training data.

During testing, for predicting performance values of new

configurations, we normalize the new data in the same

way we did during training. That is, we use exactly the

same parameters for normalization during training for any

new inputs to the network. In addition, we utilize Xavier

initialization [16] to initialize weights of all the hidden

layers in the network.

• Optimization algorithm: We use the Adam optimizer to

train the neural network as it is a very computational effi-

cient method [26]. Besides, to avoid exploding gradients,

gradient clipping technique (i.e. limits the magnitude of

the gradients between −1 and 1) is utilized during the

training process. Finally, the batch size is set to the

whole sample size (i.e. size of the training data) since for

performance prediction problem, the size of the training

data is small.

E. Tool Implementation

We implement our proposed approach, DeepPerf, using

Python 3.6 and Tensorflow 1.8.0 [3]. The input is normalized

between 0 and 1 since it is a standard way to do normalization.

The output is normalized between 0 and 100 (instead of

between 0 and 1) as we do not want the network parameters to

be too small. All the hyperparameters of the Adam optimizer

is set using the default values in Tensorflow.

To search for the hyperparameters, we use 67% of sample

for training and 33% for validation. For the learning rate, we

use grid search with 4 points logarithmically equally spaced in

the range [0.0001, 0.1]. We also use a learning rate schedule,

i.e. the learning rate is dropped by factor of 0.001 after every

epoch. For the L1 regularization hyperparameter λ, we use

grid search with 30 points logarithmically spaced in the range

[0.01, 1000]. Note that here 0.01 corresponds to a very little

regularization and 1000 corresponds to a very large regulariza-

tion. Since we normalize both input and output of the neural

network, all the software systems share the same range for

searching for λ. The optimal L1 regularization hyperparameter

is the value that achieves the smallest validation error.

IV. EVALUATION

A. Experimental Design

In this section, we aim at answering the following research

questions (RQ):

RQ1: How accurate is our proposed approach in predicting

performance of configurable software systems with binary

options? To answer this RQ, we conduct an experiment to

compare DeepPerf with other state-of-the-art approaches on

binary configurable software systems.

RQ2: How accurate is our proposed approach in predicting

performance of configurable software systems with binary

and numeric options? To answer this RQ, we conduct an

experiment to compare DeepPerf with other state-of-the-art

approaches on binary-numeric configurable software systems.

RQ3: Is a complex model like the deep sparse FNN actually

needed or can we utilize SVM or other NN-based regression

methods to achieve the same level of prediction accuracy?

To answer this RQ, we conduct an experiment to compare

DeepPerf with the support vector machine (SVM) regression

method and other alternative designs described in Section

III-B: the L1 regularized FNN where the L1 regularization

is applied to all layers, the non-regularized FNN, the L2

regularized FNN, and the dropout FNN.

RQ4: What is the time cost of DeepPerf to predict per-

formance of a configurable software system? This RQ is

to evaluate the practicality and feasibility of our proposed

approach. To answer this RQ, we show the time consumed

by the hyperparameter searching and training process of our

approach on various highly configurable software systems,

including binary and binary-numeric systems.

The detailed setup for each experiment will be described

in the subsequent sections. In general, to compare the predic-

tion accuracy between learning methods, we use the training

dataset (sample) to generate a performance model for each

method, and then use this model to predict performance

values of configurations on the testing dataset. To evaluate the

prediction accuracy, we use the mean relative error (MRE),

which is computed as,

MRE =
1

|C|
∑

c∈V

|predictedc − actualc|
actualc

× 100, (1)

where V is the testing dataset, predictedc is the predicted

performance value of configuration c, actualc is the actual

performance value of configuration c. We choose this metric

as it is widely used to measure the accuracy of prediction

models [14, 21, 25, 41].

B. Subject Systems

For the experiments, we use eleven real-world configurable

software systems: six of these systems have only binary

configuration options and were used in [21, 31, 37, 42, 55], the

other five systems have both binary and numeric configuration

options and were used in [41]. These systems have different

characteristics and are from different application domains, e.g.

multi-grid solver, web server, video encoder, database library,

database management system, compiler, etc. They are also of

different sizes (45 thousands to more than 300 thousand lines

of code) and written in different languages (Java, C, and C++).

The number of configuration options ranges from 8 to 60 while

the number of valid configurations ranges from 180 to 1031.

These software systems were measured and published online

[2]. More information about these systems and how they were

measured can be found in [41, 42]. The overview of these

eleven subject systems is given in Table II.

C. RQ1: Comparison on software systems with binary options

As mentioned in Introduction, at present, there are many

learning methods for predicting performance values of soft-

ware systems with binary options, including SPLConqueror

1100

TABLE II
THE SUBJECT SOFTWARE SYSTEMS

System Domain #Binary #Numeric #Configs
Apache Web Server 9 0 192
x264 Video Encoder 16 0 1152
LLVM Compiler 11 0 1024
BDB-C Database System 18 0 2560
BDB-J Database System 26 0 180
SQLite Database System 39 0 4653
DUNE MGS Multi-Grid Solver 8 3 2304
HIPAcc Image Processing 31 2 13485
HSMGP Stencil-Grid Solver 11 3 3456
JavaGC Runtime Env. 12 23 1031

SaC Compiler 53 7 1023

#Binary is the number of binary configuration options.
#Numeric is the number of numeric configuration options.

#Configs is the number of valid configurations

[41, 42], FourierLearning [55], and DECART [21] (the im-

proved version of CART [19]). Among these approaches, DE-
CART is recently proposed and can achieve higher prediction

accuracy than others [21]. Hence, in this experiment, we will

only compare our proposed method with DECART. We will

evaluate the two approaches on six binary subject systems in

Table II: Apache, x264, LLVM, BDB-C, BDB-J and SQLite.

These six subject systems were also used in [21].

1) Setup: Here, we adopt the experiment setup in [21].

Specifically, for each subject system, we randomly select

a certain number of configurations and their corresponding

performance values to construct the training dataset (sample);

all the remaining measurements are then used as the testing

dataset. We use five different sizes for the training dataset of

each subject system: n, 2n, 3n, 4n, 5n, where n is the number

of options of each system (which is shown in the column

#Binary of Table II). To evaluate the consistency and stability

of the approaches, for each sample size of each subject system,

we repeat this random sampling, training and testing process

30 times. We then report the mean and the 95% confidence

interval1 of the MREs obtained after 30 experiments with

DeepPerf and DECART. In addition, we also use t-test with the

significant level 0.05 to statistically compare the performance

of the two methods for each sample size.

To replicate the DECART results, we utilize the code pub-

lished on their project page [1]. We ran DECART with the best

hyperparameter tuning technique suggested in their paper [21]:

grid search combined with 10-fold cross-validation. Other

hyperparameter settings are the same as described in Section

4 of [21].

2) Results: Table III shows the prediction MREs of Deep-
Perf and DECART on six binary subject systems with mul-

tiple sample sizes. It can be seen that DeepPerf statistically

outperforms DECART for Apache, x264 and LLVM with all

sample sizes. For these software systems, using DeepPerf,
both the MRE means and their 95% confidence intervals are

much lower than those getting from DECART. Specifically,

1The 95% confidence interval of a random variable x is computed as [x̄−
1.95σ/n, x̄+1.95σ/n], where x̄ and σ are the mean and standard deviation
of that random variable and n is the number of tests. In our case, the random
variable is the MRE and n = 30.

TABLE III
COMPARISON BETWEEN DeepPerf AND DECART

Subject
System

Sample
Size

DECART DeepPerf Better
AlgorithmMean Margin Mean Margin

Apache n NA NA 17.87 1.85 NA

2n 15.83 2.89 10.24 1.15 DeepPerf
3n 11.03 1.46 8.25 0.75 DeepPerf
4n 9.49 1.00 6.97 0.39 DeepPerf
5n 7.84 0.28 6.29 0.44 DeepPerf

x264 n 17.71 3.87 10.43 2.28 DeepPerf
2n 9.31 1.30 3.61 0.54 DeepPerf
3n 6.37 0.83 2.13 0.31 DeepPerf
4n 4.26 0.47 1.49 0.38 DeepPerf
5n 2.94 0.52 0.87 0.11 DeepPerf

BDB-J n 10.04 4.67 7.25 4.21 Same

2n 2.23 0.16 2.07 0.32 Same

3n 2.03 0.16 1.73 0.12 DeepPerf
4n 1.72 0.09 1.67 0.12 Same

5n 1.67 0.09 1.61 0.09 Same

LLVM n 6.00 0.34 5.09 0.80 Same

2n 4.66 0.47 3.87 0.48 DeepPerf
3n 3.96 0.39 2.54 0.15 DeepPerf
4n 3.54 0.42 2.27 0.16 DeepPerf
5n 2.84 0.33 1.99 0.15 DeepPerf

BDB-C n 151.0 90.70 133.6 54.33 Same

2n 43.8 26.72 16.77 2.25 Same

3n 31.9 22.73 13.1 3.39 Same

4n 6.93 1.39 6.95 1.11 Same

5n 5.02 1.69 5.82 1.33 Same

SQLite n 4.87 0.22 5.04 0.32 Same

2n 4.67 0.17 4.63 0.13 Same

3n 4.36 0.09 4.48 0.08 Same

4n 4.21 0.1 4.40 0.14 Same

5n 4.11 0.08 4.27 0.13 Same

Mean: mean of the MREs seen in 30 experiments. Margin: margin of the
95% confidence interval of the MREs in 30 experiments. Better algorithm
is chosen using t-test on 30 MRE data points with significant level 0.05.

to get the same level of accuracy, DeepPerf needs far less

training data than DECART. For example, with the system

x264, DeepPerf only needs 2n sample to achieve a prediction

MRE of 3.61% (i.e. accuracy of 96.39%) whilst DECART
needs 4n - 5n sample to have the similar prediction MRE.

For BDB-C, even though there is no statistically significant

difference between DeepPerf and DECART, most of the time

DeepPerf has much smaller MRE means and margins, which

indicates that DeepPerf is more consistent than DECART. For

BDB-J and SQLite, DeepPerf and DECART perform quite

similarly.

D. RQ2: Comparison on software systems with binary-
numeric options

Regarding the problem of predicting performance values of

software systems with both binary and numeric options, at

present, SPLConqueror is the only method that can do this

task. So in this section, we will compare the effectiveness

of DeepPerf with that of SPLConqueror. We will use the

five binary-numeric subject systems in Table II: DUNE MGS,

1101

HIPAcc, HSMGP, JavaGC, and SaC. These subject systems

are also used in [41] for evaluating SPLConqueror.

1) Setup: SPLConqueror combines different sampling

heuristics for binary options (i.e. option-wise (OW), negative

option-wise (nOW), pair-wise (PW), etc), and several exper-

imental design methodologies (i.e. Plackett-Burman (PBD),

Random Design (RD), etc) for numeric options to achieve

good prediction accuracy. So in this experiment, we cannot

choose sample size as any random value. Thus, to compare

the two approaches, for each subject system, we evaluate the

two methods using the same sample sizes that SPLConqueror
suggested, and,

• For SPLConqueror, the sample is chosen based on the

sampling heuristics and experimental designs that are

proposed by the authors of SPLConqueror.

• For DeepPerf, the sample is chosen using the random

sampling heuristic.

Since there are many combinations of sampling heuristics

and experimental designs, for each subject system, we will

only pick the best four combinations that enable SPLCon-
queror to achieve the highest prediction accuracy using the

smallest sample. Besides, since each combination yields a

unique sample (except combinations having random experi-

mental design), thus, for SPLConqueror, we only report the

mean MRE on the testing dataset. For DeepPerf, to reduce

fluctuations caused by randomness, with each sample size, we

repeat the random sampling, training, and testing process 30
times. We then report both the MRE mean and the 95% confi-

dence interval margin on the testing dataset. The testing dataset

consists of all the remaining configurations after selecting the

training sample. For JavaGC and SaC, because they have

too many configurations, therefore we only select 15,000+

randomly selected configurations as their testing datasets.

2) Results: Table IV shows the prediction MREs of Deep-
Perf and SPLConqueror on five binary-numeric subject sys-

tems with multiple sample sizes. We can observe that DeepPerf
outperforms SPLConqueror on 4/5 subject systems (DUNE

MGS, HIPAcc, JavaGC and SaC) under all sample sizes. To

get the same level of accuracy, SPLConqueror needs much

more training data compared to DeepPerf. For these software

systems, both the means and the margins of DeepPerf ’s

prediction errors are small, which indicates that DeepPerf can

consistently predict performance values with high accuracy.

For HSMGP, SPLConqueror performs better than DeepPerf
but the difference is not too large, only around 1%-2%.

E. RQ3: Comparison with SVM and other NN-based regres-
sion methods

In this experiment, we aim to evaluate whether we need

to use a complex model like deep FNN or a much simpler

regression method in order to achieve the same level of

accuracy. We also evaluate whether sparsity regularization is

actually needed or we can use other regularization methods.

We compare DeepPerf with the SVM regression method [10]

and other design alternatives that were discussed in Section

III-B:

TABLE IV
COMPARISON BETWEEN DeepPerf AND SPLConqueror

Subject
System

Sample
Size

SPLConqueror DeepPerf

Sampling
Heuristic

Mean Sampling
Heuristic

Mean Margin

DUNE 49 OW RD 20.1 RD 15.73 0.90

MGS 78 PW RD 22.1 RD 13.67 0.82

240 OW PBD(49,7) 10.6 RD 8.19 0.34

375 OW PBD(125,5) 8.8 RD 7.20 0.17

HIPAcc 261 OW RD 14.2 RD 9.39 0.37

528 OW PBD(125,5) 13.8 RD 6.38 0.44

736 OW PBD(49,7) 13.9 RD 5.06 0.35

1281 PW RD 13.9 RD 3.75 0.26

HSMGP 77 OW RD 4.5 RD 6.76 0.87

173 PW RD 2.8 RD 3.60 0.2

384 OW PBD(49,7) 2.2 RD 2.53 0.13

480 OW PBD(125,5) 1.7 RD 2.24 0.11

JavaGC 423 OW PBD(49,7) 37.4 RD 24.76 2.42

534 OW RD 31.3 RD 22.98 2.77

855 OW PBD(125,5) 21.9 RD 21.83 7.07

2571 PW PBD(49,7) 28.2 RD 16.48 6.59

SaC 2060 OW RD 21.1 RD 15.83 1.25

2295 OW PBD(125,5) 20.3 RD 19.25 6.03

2499 OW PBD(49,7) 16 RD 16.73 1.13

3261 PW RD 30.7 RD 15.64 1.18

Mean: mean of the MREs seen in 30 experiments. Margin: margin of the
95% confidence interval of the MREs seen in 30 experiments.

1) Deep FNN with the L1 regularization applied to all

layers (L1-all-FNN)

2) Deep FNN without regularization (Plain-FNN)

3) Deep FNN with the L2 regularization [50] (L2-FNN)

4) Deep FNN with the dropout technique [45] (Dropout-
FNN)

Five binary subject systems in Table II with three sample sizes

per system will be used to evaluate the approaches.

1) Setup: For the SVM regression method, we use the

function SVR in scikit-learn package [35] to perform model

training and prediction. Scikit-learn SVR function is imple-

mented using libsvm, an SVM library proposed in [9]. To

select the best hyperparameters for SVR, we utilize grid-search

and 10-fold cross validation. We construct the grid by varying

four hyperparameters in SVR: 10 values of C ranging from

0.01 to 1000, 10 values of gamma ranging from 0.001 to

1, 5 values of epsilon ranging from 0.001 to 1 and the

kernel functions are linear, poly or rbf. With this setting, the

hyperparameter space contains 1500 different combinations

of hyperparameter values, hence, we believe it is sufficient

enough to find the optimal setting for SVR.

For the Plain-FNN approach, we use the Step 1 of our

proposed hyperparameter search strategy (described in Section

III-C) to find the optimal network architecture and the learning

rate. For L1-all-FNN, L2-FNN, and Dropout-FNN, we also

use our proposed hyperparameter search strategy to tune

the hyperparameters. All the settings of the hyperparameter

searching process are the same as those for DeepPerf. Except

that, for Dropout-FNN, the search range for the dropout hyper-

1102

TABLE V
COMPARISON BETWEEN DeepPerf, SVM AND OTHER NN-BASED REGRESSION METHODS

Subject
System

Sample
Size

DeepPerf L1-all-FNN Plain-FNN L2-FNN Dropout-FNN SVM
Mean Margin Mean Margin Mean Margin Mean Margin Mean Margin Mean Margin

Apache n 17.87 1.85 19.39 1.60 21.83 1.34 18.18 1.39 23.0 1.93 22.97 1.56

3n 8.25 0.75 8.97 1.52 10.52 0.65 8.71 0.66 9.99 0.60 13.74 0.90

5n 6.29 0.44 7.15 1.41 8.40 0.65 6.94 0.61 7.42 0.49 8.77 0.74

x264 n 10.43 2.28 10.70 1.92 13.56 1.07 12.41 1.32 14.1 1.90 13.62 1.64

3n 2.13 0.31 2.77 0.22 4.99 0.43 3.10 0.31 4.58 0.26 5.26 0.41

5n 0.87 0.11 1.72 0.10 3.12 0.18 1.31 0.09 1.52 0.14 2.62 0.18

BDB-J n 7.25 4.21 12.12 4.97 12.47 1.76 6.76 2.00 12.1 3.10 17.1 2.11

3n 1.73 0.12 3.38 2.88 3.11 0.17 1.76 0.12 2.76 0.27 5.49 0.30

5n 1.61 0.09 1.62 0.09 2.37 0.15 1.59 0.09 2.24 0.16 2.70 0.17

LLVM n 5.09 0.80 4.91 0.71 8.03 1.53 4.50 0.34 6.16 0.45 4.64 0.37

3n 2.54 0.15 2.80 0.17 5.07 0.55 2.68 0.18 3.96 0.25 2.56 0.15

5n 1.99 0.15 2.39 0.18 3.87 0.27 2.32 0.15 2.98 0.16 2.22 0.13

BDB-C n 133.6 54.3 221.4 51.4 216.6 47.1 187.8 50.0 273.3 68.2 263.8 39.66

3n 13.10 3.39 118.5 91.4 67.34 9.13 26.61 4.92 47.7 9.73 264.9 36.66

5n 5.82 1.33 50.55 49.3 24.43 3.39 10.70 1.61 16.8 1.95 212.5 19.9

SQLite n 5.04 0.32 4.72 0.27 6.38 0.40 5.53 0.31 4.94 0.17 4.51 0.14

3n 4.48 0.08 4.49 0.07 5.02 0.08 4.70 0.13 4.51 0.07 4.08 0.05

5n 4.27 0.13 4.07 0.12 4.82 0.13 4.18 0.11 4.29 0.06 3.80 0.04

Mean: mean of the MREs seen in 30 experiments. Margin: margin of the 95% confidence interval of the MREs seen in 30 experiments.

parameter is [0.001, 1] since the dropout hyperparameter needs

to be smaller than 1. And for L1-all-FNN, the search range for

the L1 regularization hyperparameter is [0.001, 100] (whilst

DeepPerf ’s search range is [0.01, 1000]), since in this case

we apply regularization to all the layers so the regularization

hyperparameter needs to be smaller.

2) Results: Table V shows the prediction MREs of the six

approaches. As expected, for all subject systems, Plain-FNN
performs the worst compared to other NN-based approaches.

The reason is that a deep neural network is prone to overfit

on training data. Without a regularization technique it cannot

produce good predictions for new data. The L2-FNN and

Dropout-FNN approaches can overcome the overfitting prob-

lem of the Plain-FNN. However, for software performance,

the L2 regularization or dropout technique is not as effective

as the L1 regularization. These approaches perform similarly

to DeepPerf on systems Apache, BDB-J, LLVM, SQLite.

However, they perform much worse than DeepPerf on systems

BDB-C and x264. For L1-all-FNN, it performs reasonably well

for most of the systems but performs badly on BDB-C. Lastly,

for SVM, even though it has quite good performance on system

SQLite, it does not work well on other systems.

F. RQ4: Time cost of DeepPerf

The time cost of DeepPerf on searching for optimal hyper-

parameters and training a model is reasonable. Specifically,

• For binary subject systems with the number of config-

uration options n less than 20 (Apache, x264, LLVM,

BDB-C), when the sample size increases from n to

5n, the time taken by hyperparameter searching and

model training increases from 1 to 4 minutes. For binary

subject systems with more than 20 configuration options

(BDB-J, SQLite), it takes DeepPerf 2 - 6 minutes to do

hyperparameters searching and network training.

• For binary-numeric subject systems with the number of

configurations n less than 20 (DUNE MGS, HSMGP),

and with the sample sizes as shown in Table IV, the time

cost for the hyperparameter searching and model training

process ranges from 2 to 5 minutes. For binary-numeric

subject systems with more than 20 configuration options

(HIPAcc, JavaGC, SaC), and with the sample sizes as

shown in Table IV, the hyperparameter tuning and model

training process takes 4 to 30 minutes.

Meanwhile, the time cost of DECART and SPLConqueror
is from a few seconds to 2 minutes for the systems and

sample sizes in Tables III and IV. Even though DeepPerf takes

longer time to build the prediction model than DECART and

SPLConqueror, the time cost of DeepPerf is still acceptable.

Besides, it is worth re-emphasizing that DeepPerf can predict

performance of binary and/or numeric systems with very high

accuracy while DECART can only predict performance of

binary systems and SPLConqueror needs to use some special

sampling heuristics to achieve good prediction accuracy. Note

that all the time cost here is measured when running all the

methods on a Windows 7 computer with Intel Xeon CPU E5-

1650 3.2GHz 16GB RAM,

G. Discussions
1) Strengths and limitations of our proposed approach: The

first strength of DeepPerf is that it can predict performance

of highly configurable software systems with both binary

and numeric options at higher prediction accuracy than other

state-of-the-art approaches. As shown in our experiments, for

software systems with binary options, compared to DECART,

most of the time DeepPerf can achieve much better prediction

1103

accuracy while using less sample. For software systems with

binary and numeric options, DeepPerf outperforms SPLCon-
queror in most of the subject systems for all sample sizes.

DeepPerf ’s second strength is that it uses random sampling

heuristic to select sample for model training, hence, it is

flexible when constructing the sample. Furthermore, it can be

incorporated with other sampling heuristics and experimental

designs to further improve prediction accuracy and reduce

measurement effort. FourierLearning and CART/DECART
also use random sampling while SPLConqueror needs to use

some specific sampling heuristics and experimental designs to

achieve high prediction accuracy.
Finally, the third strength of DeepPerf is that it is both

an automated algorithm (i.e. it does not require human effort

to tune the hyperparameters) and a progressive algorithm (i.e.

users can always achieve a much higher model accuracy when

having more training data). This can be seen in Tables III and

IV, when the sample size increases, the prediction accuracy

of DeepPerf also increases.
A limitation of DeepPerf is that it takes longer time to train

than DECART and SPLConqueror. For most of the subject

systems, using a Windows 7 computer with Intel Xeon CPU

E5-1650 3.2GHz 16GB RAM, DECART and SPLConqueror
normally take a few seconds to a few minutes to train a

model. Meanwhile, DeepPerf takes a few minutes for systems

with less than 20 configuration options and can take up to 30

minutes for systems with more than 50 options.
2) Threats to Validity: To increase the internal validity of

our experiment results, for each sample size, we repeat the

prediction process 30 times with random training dataset. For

each process, the prediction is evaluated on a test dataset which

does not include any part of the training dataset. We use mean

relative error as a metric as it is a widely-used metric in

the literature for evaluating the effectiveness of performance

prediction algorithm and it is also used to evaluate other

approaches we compared. Note that, in the paper, to evaluate

the algorithm stability, we not only evaluate using the mean

relative error, but also using the 95% confidence interval.
For external validity, we evaluate the algorithms using

eleven public datasets with different characteristics, domains,

languages, etc. These subject systems have a large range

of configuration options and has been used extensively in

the literature to evaluate the effectiveness of performance

prediction algorithm.

V. RELATED WORK

Many large and complex software systems are highly con-

figurable. A configuration option can be treated as a feature

and a configurable system can be treated as a software product

line (a family of similar software systems). A large body of

work has been devoted to modeling features and checking

consistency of feature configurations (e.g., [6, 12, 47, 52]).

Despite their importance, quality attributes (or non-functional

requirements) such as performance have not been sufficiently

addressed in product line practice.
To predict the quality attributes of a product line mem-

ber, Zhang et al. [54] proposed a Bayesian Belief Network

(BBN) based approach. By performing qualitative analysis

over the BBN, the quality of a product line member can be

estimated. Their method is good for quality attributes (such as

security, reusability, etc) that are “hard to define, impossible

to measure, easy to recognize [14]”. However, some quality

attributes, such as performance, can be relatively easy to

measure. A quantitative analysis of these quality attributes can

be complementary to the qualitative analysis [20]. Recently,

researchers have measured performance of several large-scale

configurable systems and proposed various learning methods

to build performance prediction models from these measure-

ments. In Introduction, we have described pros and cons

of some state-of-the-art methods including SPLConqueror
[40, 42], CART/DECART [19, 21] and FourierLearning [55].

Our experimental results show that for most of the evaluated

subject systems, the proposed DeepPerf approach outperforms

all the related methods, i.e. achieve higher prediction accuracy

and use less sample data.

There are also some work on selecting an optimal sample

of configurations. For example, Sayyad et al. [38, 39] utilized

evolutionary algorithms to select optimal features regarding

multiple objectives. Sarkar et al. [37] used projective sampling

and feature-frequency heuristic to determine sample that is

small enough to decrease the measurement effort and large

enough to increase the prediction accuracy. Nair et al. [32]

proposed to use the WHAT spectral learner to select a small

number of configurations. WHAT computes distance matrix

between the configurations and performs dimensionality re-

duction. Later, they also proposed a rank-based approach

[31], which can reduce the cost (in terms of the number of

configurations to be measured) as well as the time required

to build performance models. Our work aims to suggest a

new learning method to construct software performance model

from a sample, which is a different goal compared to the above

work. In fact, we can combine our learning approach with

these work to further improve the accuracy of the performance

prediction model and use less sample data.

VI. CONCLUSION

In this paper, we have proposed DeepPerf, a performance

prediction model for highly configurable systems based on

deep sparse FNN. We also design a practical hyperparameter

search strategy, which can automatically find a good set of

hyperparameters that can lead to high prediction accuracy

within a short time. The experimental results on public datasets

show that DeepPerf can achieve better performance prediction

accuracy with less data, when compared to other state-of-the-

art approaches. Furthermore, DeepPerf can work with both

binary and numeric configuration options.

In the future, we will explore the universal property of

neural networks in approximations of different function classes

[29] to further improve the design of our model.

Our experimental data and source code are publicly avail-

able at: https://github.com/DeepPerf/DeepPerf.
Acknowledgment. This work is supported by NSFC grant

61828201.

1104

REFERENCES

[1] DECART project page. https://github.com/jmguo/

DECART, accessed 2019-02-01.

[2] SPLConqueror project page. http://www.fosd.de/

SPLConqueror, accessed 2019-02-01.

[3] M. Abadi and P. Barham et all. Tensorflow: A system for

large-scale machine learning. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pages 265–283, 2016.

[4] M. Anthony. Boolean functions and artificial neural

networks. Technical Report CMU/SEI-90-TR-021, De-

partment of Mathematics, London School of Economics,

London, UK, 2003.

[5] A. R. Barron. Universal approximation bounds for su-

perpositions of a sigmoidal function. IEEE Transactions
on Information Theory, 39(3):930–945, 1993.

[6] D. Batory, D. Benavides, and A. Ruiz-Cortes. Automated

analysis of feature models: Challenges ahead. Commu-
nications of the ACM, 49(12):45–47, December 2006.

[7] J. Bergstra and Y. Bengio. Random search for hyper-

parameter optimization. The Journal of Machine Learn-
ing Research, 13:281–305, 2012.

[8] M. Calder, M. Kolberg, E. Magill, and S. Reiff-

Marganiec. Feature interaction: A critical review and

considered forecast. Computer Networks, 41(1):115–141,

2003.

[9] C. Chang and C.J. Lin. LIBSVM: A library for sup-

port vector machines. ACM Transactions on Intelligent
Systems and Technology, 2:27:1–27:27, 2011. Software

available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[10] C. Cortes and V. Vladimir. Support-vector networks.

Machine learning, 20(3):273–297, 1995.

[11] G. Cybenko. Approximation by superpositions of a

sigmoidal function. Mathematics of Control, Signals and
Systems, 2(4):303–314, 1989.

[12] K. Czarnecki and A. Wasowski. Feature diagrams and

logics: There and back again. In Proceedings of the 11th
International Software Product Line Conference (SPLC),
pages 23–34, 2007.

[13] R. Eldan and O. Shamir. The power of depth for

feedforward neural networks. In Proceedings of the
JMLR: Workshop and Conference, volume 49, pages 1–

34, 2016.

[14] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit.

A simulation study of the model evaluation criterion

mmre. IEEE Transactions on Software Engineering,

29(11):985–995, 2003.

[15] K. Funahashi. On the approximate realization of con-

tinuous mappings by neural networks. Neural Networks,

2(3):183–192, 1989.

[16] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In Proceed-
ings of the 13th International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 249–256,

2010.

[17] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse

rectifier neural networks. In Proceedings of the 14th
International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 315–323, 2011.

[18] I. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT Press, 2016.

[19] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and

A. Wsowski. Variability-aware performance prediction:

A statistical learning approach. In Proceedings of the
28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 301–311, 2013.

[20] J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A genetic

algorithm for optimized feature selection with resource

constraints in software product lines. Journal of Systems
and Software, 84(12):2208 – 2221, 2011.

[21] J. Guo, D. Yang, N. Siegmund, S. Apel, A. Sarkar,

P. Valov, K. Czarnecki, A. Wasowski, and H. Yu.

Data-efficient performance learning for configurable sys-

tems. Empirical Software Engineering, 23(3):1826–1867,

2018.

[22] K. Hornik. Approximation capabilities of multilayer

feedforward networks. Neural Networks, 4(2):251–257,

1991.

[23] K. Hornik, M. Stinchcombe, and H. White. Multilayer

feedforward networks are universal approximators. Neu-
ral Networks, 2(5):359–366, 1989.

[24] P. Jamshidi, N. Siegmund, M. Velez, C. Kästner, A. Patel,

and Y. Agarwal. Transfer learning for performance mod-

eling of configurable systems: An exploratory analysis.

In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE),
pages 497–508, 2017.

[25] M. Jorgensen and M. Shepperd. A systematic re-

view of software development cost estimation studies.

IEEE Transactions on Software Engineering, 33(1):33–

53, 2007.

[26] D. Kingma and J. Ba. Adam: A method for stochastic

optimization. In Proceedings of the 3rd International
Conference for Learning Representations (ICLR), 2015.

[27] D.R. Kuhn, R.N. Kacker, and Y. Lei. Introduction to
combinatorial testing. CRC Press, 2013.

[28] M. Leshno, V.Y. Lin, A. Pinkus, and S. Schocken.

Multilayer feedforward networks with a nonpolynomial

activation function can approximate any function. Neural
Networks, 6(6):861–867, 1993.

[29] S. Liang and R. Srikant. Why deep neural network

for function approximation? Proceedings of the 5th
International Conference on Learning Representation
(ICLR), 2017.

[30] V. Nair and G.E. Hinton. Rectified linear units im-

prove restricted boltzmann machines. In Proceedings of
the 27th International Conference on Machine Learning
(ICML), pages 807–814, 2010.

[31] V. Nair, T. Menzies, N. Siegmund, and S. Apel. Using

bad learners to find good configurations. In Proceedings
of the 11th Joint Meeting on Foundations of Software

1105

Engineering (ESEC/FSE), pages 257–267, 2017.

[32] V. Nair, T. Menzies, N. Siegmund, and S. Apel. Faster

discovery of faster system configurations with spectral

learning. Automated Software Engineering, 25(2):247–

277, Jun 2018.

[33] A.Y. Ng. Feature selection, l1 vs. l2 regularization,

and rotational invariance. In Proceedings of the 21st
International Conference on Machine Learning (ICML),
2004.

[34] A. Nhlabatsi, R. Laney, and B. Nuseibeh. Feature

interaction: The security threat from within software

systems. Progress in Informatics, 5:75–89, 2008.

[35] F. Pedregosa and G. Varoquaux et al. Scikit-learn:

Machine learning in python. The Journal of Machine
Learning Research, 12:2825–2830, 2011.

[36] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and

Q. Liao. Why and when can deep-but not shallow-

networks avoid the curse of dimensionality: A review.

International Journal of Automation and Computing,

14(5):503–519, 2017.

[37] A. Sarkar, J. Guo, N. Siegmund, S. Apel, and K. Czar-

necki. Cost-efficient sampling for performance prediction

of configurable systems. In Proceedings of the 30th
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pages 342–352, 2015.

[38] A.S. Sayyad, J. Ingram, T. Menzies, and H. Ammar.

Scalable product line configuration: A straw to break the

camel’s back. In Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE), pages 465–474, 2013.

[39] A.S. Sayyad, T. Menzies, and H. Ammar. On the value

of user preferences in search-based software engineering:

A case study in software product lines. In Proceedings
of the 35th International Conference on Software Engi-
neering (ICSE), pages 492–501, 2013.

[40] N. Siegmund, A. Grebhahn, A. Apel, and C. Kästner.

Performance-influence models for highly configurable

systems. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE),
pages 284–294, 2015.

[41] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner.

Performance-influence models for highly configurable

systems. In Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE), pages

284–294, 2015.

[42] N. Siegmund, S. Kolesnikov, C. Kästner, S. Apel, D. Ba-

tory, M. Rosenmüller, and G. Saake. Predicting perfor-

mance via automated feature-interaction detection. In

Proceedings of the 34th International Conference on
Software Engineering (ICSE), pages 167–177, 2012.

[43] N. Siegmund, M. Rosenmüller, C. Kästner, P.G. Giar-

russo, S. Apel, and S. S. Kolesnikov. Scalable prediction

of non-functional properties in software product lines. In

International Software Product Line Conference, pages

160–169, 2011.

[44] J. Snoek, H. Larochelle, and R.P. Adams. Practical
bayesian optimization of machine learning algorithms.

In Proceedings of the 25th International Conference
on Neural Information Processing Systems (NIPS), vol-

ume 2, pages 2951–2959, 2012.

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,

and R. Salakhutdinov. Dropout: A simple way to prevent

neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[46] B. Steinbach and R. Kohut. Neural Networks: A Model

of Boolean Functions. In Proceedings of the 5th Interna-
tional Workshop on Boolean Problems, pages 223–240,

2002.

[47] J. Sun, H. Zhang, Y. Fang, and L.H. Wang. Formal

semantics and verification for feature modeling. In

Proceedings of the IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS),
pages 303–312, 2005.

[48] E. Thereska, B. Doebel, A.X. Zheng, and P. Nobel.

Practical performance models for complex, popular ap-

plications. ACM SIGMETRICS Performance Evaluation
Review, 38(1):1–12, 2010.

[49] R. Tibshirani. Regression shrinkage and selection via the

lasso. Journal of the Royal Statistical Society, Series B,

58:267–288, 1996.

[50] A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill-Posed
Problems. Winston & Sons, Washington, D.C., 1977.

[51] L. Tóth. Phone recognition with deep sparse rectifier

neural networks. In Proceedings of the 2013 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing, pages 6985–6989, 2013.

[52] H.H. Wang., Y.F. Li, J. Sun, H. Zhang, and J. Pan.

Verifying feature models using OWL. Web Semantics:
Science, Services and Agents on the World Wide Web,

5(2):117–129, 2007.

[53] D. Yarotsky. Error bounds for approximations with deep

relu networks. Neural Networks, 94:103–114, 2017.

[54] H. Zhang, S. Jarzabek, and B. Yang. Quality prediction

and assessment for product lines. In Proceedings of
the International Conference on Advanced Information
Systems Engineering (CAiSE), pages 681–695, 2003.

[55] Y. Zhang, J. Guo, E. Blais, and K. Czarnecki. Perfor-

mance prediction of configurable software systems by

fourier learning. In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE), pages 365–373, 2015.

1106

