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Abstract. In software evolution, developers typically need to identify
whether the failure of a test is due to a bug in the source code under test
or the obsoleteness of the test code when they execute a test suite. Only
after finding the cause of a failure can developers determine whether to
fix the bug or repair the obsolete test. Researchers have proposed several
techniques to automate test repair. However, test-repair techniques typi-
cally assume that test failures are always due to obsolete tests. Thus, such
techniques may not be applicable in real world software evolution when
developers do not know whether the failure is due to a bug or an obsolete
test. To know whether the cause of a test failure lies in the source code
under test or in the test code, we view this problem as a classification
problem and propose an automatic approach based on machine learning.
Specifically, we target Java software using the JUnit testing framework
and collect a set of features that may be related to failures of tests. Us-
ing this set of features, we adopt the Best-first Decision Tree Learning
algorithm to train a classifier with some existing regression test failures
as training instances. Then, we use the classifier to classify future failed
tests. Furthermore, we evaluated our approach using two Java programs
in three scenarios (within the same version, within different versions of a
program, and between different programs), and found that our approach
can effectively classify the causes of failed tests.

1 Introduction
After software is released to its user, it is still necessary for developers to modify
the released software due to enhancement, adaptation or bug1 fixing [32], which
is typically referred to as software evolution. As estimated, 50%-90% of total
software development costs [31, 46, 16] are due to software evolution.

In software evolution, developers usually perform regression testing to make
sure that their modifications to the software work as expected and do not intro-
duce new faults. Modifications in software evolution include changing function-
ality, fixing bugs, refactoring, restructuring code, and so on.

In software evolution, some modifications (e.g., changing functionality) may
further imply changes of the specifications on program behaviors. In such cases,

1 Bugs and faults are used interchangeably in this paper.



developers may need to modify the corresponding tests to reflect developers’
changing expectation on program behaviors. Thus, when a regression test fails2,
it may just indicate that the specification the test represents is obsolete and
the test itself needs repair. If developers do not want to change their specifica-
tions of the program in software evolution, a regression test failure may indicate
that developers should modify the program without modifying the test. In other
words, the tests and the software under test should be developed and maintained
synchronously [59].

Specifically, developers for software systems often reuse and adapt existing
tests to evolve test suites [40]. As these existing tests are developed for the old
version of the software, when some of them cause failures of the new version
in regression testing, the failures may not be due to bugs introduced in the
modifications [36, 8]. That is to say, some failures are due to bugs in the modified
source code under test, but other failures are due to the obsoleteness3 of some
tests. Specifically, an internal study of ABB Corporate Research indicates that
around 80% of failures in regression testing are due to bugs in the software under
test and the other failures are due to obsolete tests [45].

As testing frameworks like JUnit4 have been widely used in practice, the tests
constructed by developers are also pieces of code. For example, Fig. 1 presents
a Java program and its tests. To distinguish the tests and software under test,
we denote the source code of the tests and the source code of the software under
test as test code and product code to make our presentation concise. In practice,
it is necessary for developers to identify whether such a failure is caused by a
bug in the source code of the software under test or an obsolete test. Otherwise,
developers would not know how the regression test failures reflect the quality of
the software under test. However, as it may be challenging to guess developers’
intention as the product code does not reflect developers’ intention(i.e., whether
or not changing the specifications of the program) explicitly in software evolu-
tion, it is not straightforward to know whether the failure of a regression test
is due to faulty program changes or obsolete specifications represented by tests.
Moreover, as reported in a technical report from Microsoft Research, the test
code is often larger than the product code in many projects [50]. As both the
test code and the product code are large, it is tedious and difficult for developers
to determine the cause of a failure by manually examining the test code and/or
the product code. Furthermore, if developers take obsolete tests as bugs in the
software, they may submit some false bug reports and thus incur extra burdens
for bug-report processing (e.g., triaging [54]).

Furthermore, the knowledge about whether regression test failures are due
to bugs or obsolete tests not only can help understand what is going on in the

2 If the output of a test is as expected (i.e., being as asserted), we call that the test
passes; otherwise, we call that the test fails.

3 Due to the difference between the new version and the old version of software under
test, some existing tests for the old version cannot be used to test the new version.
We call tests that need modification for the new version as obsolete tests.

4 http://www.junit.org.



public class  Account{
private String  thisAcnt;
private double  balance;

  public  Account(String acnt, double amt) {
     this.balance=amt;
     this.Acnt=acnt;}

public double  getBalance(){
     return  this.balance; }
  public void  setBalance(double balance) {

 this.balance=balance; }
  public void  sendto(String account) {
    // send money to target account}
 public boolean  deposit(double amt) {

if (amt > 0) {
      setBalance(getBalance() + amt);

 return true;}
else

return false;}
public boolean  withdraw(double amt) {

double fee=amt*0.1;
 if(getBalance()>=amt+fee && amt>0){

            setBalance(getBalance()-amt-fee);
 return true;

       }
else return  false;

  }
  public boolean  transfer(double amt, String anoAcnt) {

double fee=0.01;  // should be fee=amt*0.1
if(getBalance()>=amt+fee && amt>0){

          withdraw(amt+fee);
          sendto(anoAcnt);

return true;
       }

    else return  false;
 }

(a) Released Software

public class  Testcases{
  Account a;
 protected void  setUp(){

     a=new Account(100.0, "user1");}
 protected void  tearDown(){}

 public void  test1(){
    a.transfer(50.0, "user2");
    a.withdraw(40.0);
    assertEquals(9.5,a.getBalance());}

 public void  test2(){
    a.withdraw(40.0);
    assertEquals(56,a.getBalance();//should be 60}
  ...

}

(c) JUnit Tests

public class  Account{
private String  thisAcnt;
private double  balance;

  public Account(String acnt, double amt) {
     this.balance=amt;
     this.Acnt=acnt;}

public double  getBalance(){
     return  this.balance; }
  public void  setBalance(double balance) {

 this.balance=balance; }
  public void  sendto(String account) {
    // send money to target account}
 public boolean  deposit(double amt) {

if (amt > 0) {
      setBalance(getBalance() + amt);

 return true;}
else

return false;}
public boolean  withdraw(double amt) {

if(getBalance()>=amt && amt>0){
            setBalance(getBalance()-amt);

 return true;
       }

else return  false;
  }
  public boolean  transfer(double amt, String anoAcnt) {

double fee=0.1;  // should be fee=amt*0.1
if(getBalance()>=amt+fee && amt>0){

          withdraw(amt+fee);
          sendto(anoAcnt);

return true;
       }

    else return  false;
 }

(b) Modified Software

changewithdraw

fix
bugs

Fig. 1. An Example Program and Its JUnit Tests

regression testing process but also can help reduce the cost of code modification
to fix bugs or repair tests. If the failure is due to a bug, developers can use
automated techniques (e.g., [52, 56]) to decrease the cost of debugging in the
product code; if the failure is due to an obsolete test, developers can also use
automated techniques (e.g., [6–8]) to decrease the cost of test repair in the test
code. It should be noted that techniques for automated debugging typically
assume tests to be correct and focus on the product code to fix bugs. Similarly,
techniques for automated test repair typically assume that the cause of the failure
lies in the obsoleteness of tests. Therefore, it becomes the preceding condition for
developers to identify the cause of the failure when they observe a failure [41].
That is to say, understanding the cause of a failure actually serves as an indicator
for whether to apply automated debugging techniques or automated test-repair
techniques.



In this paper, we propose a novel approach to classifying the causes of regres-
sion test failures for Java programs using JUnit as the framework for regression
testing. In particular, we transform the problem of classifying the cause (i.e.,
buggy product code or obsolete test code) of a regression test failure into a
problem of learning a classifier based on the data of various features related to
failures. Specifically, our approach adopts the Best-first Decision Tree Learning
algorithm [47, 48], which is one of the typical machine-learning algorithms in the
literature. Moreover, we collect the data of the failure related features used for
classification via analyzing the software under test and its test code.

To evaluate our machine-learning based approach, we performed three em-
pirical studies on two Java programs: Jfreechart and Freecol. The first study
aims to evaluate whether our approach is effective when being applied for the
same version of a program. That is, the training set and the testing set consist
of instances from the same version of a program. The second study aims to eval-
uate whether our approach is effective when being applied between versions of a
program. That is, the training set and the testing set are instances of different
versions of a program. The third study aims to evaluate whether our approach
is effective when being applied between different programs. That is, the train-
ing set and the testing set are instances of different programs. According to the
results of our empirical studies, our approach is effective in correctly classifying
the causes of regression test failures when it is applied within the same program
(including the same version and different versions).

In summary, this paper makes the following main contributions.

– First, we present a machine-learning based approach to classifying the causes
of regression test failures. To our knowledge, this is the first piece of research
that tries to classify the cause of a regression test failure as a bug in the
product code or an obsolete test.

– Second, we performed three empirical studies to evaluate the effectiveness of
the proposed approach in three scenarios: being applied within the same ver-
sion, being applied within different versions of a program, and being applied
between different programs.

The rest of this paper is organized as follows. Section 2 summarizes the
related work. Section 3 illustrates the problem in this paper by an example.
Section 4 presents the details of our approach. Section 5 presents the setup of
our empirical studies. Section 6 presents the findings of the empirical studies.
Section 7 presents the discussion and Section 8 concludes.

2 Related Work
To our knowledge, the work presented in this paper is the first approach to clas-
sifying the causes of regression test failures in software evolution. The research
most related to our work is fault repair, including debugging in the product code
and test repair, which will be discussed in Section 2.1 and Section 2.2. Our work
is also related to regression testing as our work deals with tests in regression
testing, and thus we will discuss regression testing techniques in Section 2.3.
Furthermore, our work can be viewed as an application of machine-learning and



thus we will discuss application of machine-learning in software quality engineer-
ing in Section 2.4.

2.1 Debugging in Product Code
Software debugging focuses on identifying the locations of faults and then fixing
the faults by replacing the faulty code with the correct code.

Most existing research [2, 22, 52, 64] on software debugging focuses on the first
step, which is fault localization. Typically, spectrum-based fault-localization ap-
proaches [20, 27, 34] compare the execution information of failed tests and that
of passed tests to calculate the suspiciousness of each structural units, and then
localize the locations of faulty structural units by ranking the structural units
based on their suspiciousness. As the effectiveness of these approaches is depen-
dent on the test suites [1] and faults, some research focuses on improving these
approaches via test selection [19] and generation [51]. Besides these spectrum-
based fault localization techniques, some researchers transform fault localization
to other mathematical problems, like the maximal satisfiability problem [28] and
the linear programming problem [9]. To fix bugs, several techniques [17, 56] have
been proposed to automate patch generation. For example, Weimer et. al [56]
proposed to fix faults by using genetic programming to generate a large number
of variants of the program. However, as these techniques may generate nonsen-
sical patches, Kim et al. [29] proposed a patch generation approach (i.e., PAR),
which uses fix patterns learned from existing human-written patches.

The research on fault localization is related to our work because potentially
these techniques may be extended to solve our problem. To verify the effec-
tiveness of these techniques on classifying the causes of regression test failures,
we have conducted a preliminary experiment and found that direct application
of these fault-localization techniques can hardly correctly classify the causes of
regression test failures. Details of this experiment are presented in Section 7.

2.2 Test Repair
When changing requirements invalidate existing tests, tests are broken. Besides
deleting obsolete tests [69] or creating new tests to exercise the changes [57], test-
repair techniques [58] are proposed to repair broken tests rather than removing or
ignoring these tests. Specifically, Galli et al. [15] proposed a technique to partially
order broken unit tests rather than arbitrary order, according to the sets of
methods these tests called. Daniel et al. [8] presented a technique (i.e., ReAssert)
based on dynamic analysis and static analysis to find repairs for broken unit tests
by retaining their fault-revealability. As ReAssert cannot repair broken tests
when they have complex control flows or operations on expected values, Daniel
et al. [6, 7] presented a novel test-repair technique based on symbolic execution to
improve ReAssert to repair more test failures and provide better repairs. These
techniques aim to repair broken unit tests in general, while some techniques
have been proposed to repair broken tests in graphical user interfaces [36] or
web applications [24].

To learn whether existing test-repair techniques are applicable in real prac-
tice, Pinto et al. [41] conducted an empirical study on how test suites evolved
and found that test repair does occur in practice.



Existing research on debugging in product code and test repair (including
those introduced by Section 2.1 and Section 2.2) assumes that developers have
known whether the failure to be due to the product code or the test code. That
is, when a failure occurs, developers may have to manually determine the cause
of this failure before applying existing techniques on debugging in the product
code or on test repair. Without such knowledge, developers risk to locate the
faults in the wrong places. Unfortunately, to our knowledge, except our work
reported in this paper, there is no previous study in the literature on this issue.

2.3 Regression Testing
Regression testing [33, 66] is a testing process, whose aim is to assure the qual-
ity of a program after modification. After a program is modified, developers
often reuse existing tests for the program before modification and may add some
tests for the modification. As it is time-consuming to run the aggregated tests,
many test selection and/or reduction techniques [5, 21, 65, 71] have been pro-
posed to reduce the number of tests used in regression testing. To optimize the
cost spent on regression testing, test prioritization techniques [61, 62, 68] have
been proposed to schedule the execution order of tests. Most research in test
selection, reduction and prioritization investigates various coverage criteria, in-
cluding statement coverage, function coverage [12], modified condition/decision
coverage [44], and so on. Other research investigates various test selection, re-
duction, and prioritization algorithms, including greedy algorithms [25], genetic
algorithms [35], integer linear programming based algorithms [5, 21, 71], and so
on.

Our work is related to regression testing, especially related to test selec-
tion. However, our work aims to determine the causes of regression test failures,
whereas test selection aims to select tests that are effective in exposing faults
in the modified program. Specifically, test selection aims to select tests whose
output becomes obsolete for the new version, whereas our work tends to identify
the tests that become obsolete and should be modified to test the new version.

2.4 Application of Machine Learning in Software Quality
Engineering

It is a relatively new topic to apply machine learning to software quality engi-
neering [4, 14, 18, 23, 42]. Brun and Ernst [4] isolated fault-revealing properties
of a program by applying machine learning to a faulty program and its fixed
version. Then the fault-revealing properties are used to identify other potential
faults. Francis et al. [14] proposed two new tree-based techniques to classify fail-
ing executions so that the failing executions resulting from the same cause are
grouped together. Podgurski et al. [42] proposed to use supervised and unsu-
pervised pattern classification and multivariate visualization to classify failing
executions with the related cause. Bowring et al. [3] proposed to apply an active
learning technique to classify software behavior based on execution data. Haran
et al. [23] proposed to apply the Random Forest algorithm to classify passing ex-
ecutions from failing ones. Wang et al. [53] proposed to apply Bayesian Networks
to predict the harmfulness of a code clone operation when developers’ perform-
ing copy-and-paste operation. Host and Ostvold [26] proposed to identify the



problem in method naming by using data mining techniques. Zhong et al. [70]
proposed an API usage mining framework MAPO using clustering and asso-
ciation rule mining. Furthermore, machine-learning techniques have also been
widely applied to software defect prediction [37, 30, 60].

Generally speaking, the existing research on application of machine learning
in software quality engineering mostly aims to automate fault detection or iden-
tify failing executions, whereas our work aims to identify whether faults are in
the product code or in the test code.

3 Motivating Example
In software evolution, if developers’ intention (e.g., changing functionality) in-
curs specification changes when making modifications, such failures may indicate
obsolete test code. If developers’ intention does not incur specification changes
when making modifications, such failures probably indicate faulty product code.
As code changes do not explicitly reflect developers’ intention, it is challenging
to determine through automatic program analysis whether an observed failure
in regression testing is due to bugs in the product code or obsolete tests.

Fig. 1 presents an example Java class Account (including the version before
modification and the version after modification) and its JUnit tests. The for-
mer version of Account is shown by Fig. 1(a), which contains a bug in method
transfer. Fig. 1(c) gives its JUnit tests, including two tests (at the test-method
level) test1 and test2.

When developers run this version of Account with the two tests, test1 fails
but test2 passes. To fix the bug in Account that causes the failure of test1,
developers may modify method transfer, shown by Fig. 1(b). In using this ver-
sion of class Account, the bank wants to remove extra fees when consumers
withdraw their savings, and thus developers have to modify method withdraw
of Account. In summary, when evolving Account from Fig. 1(a) to Fig. 1(b),
developers modify two methods of Account due to different reasons. Method
withdraw is modified because developers change their expectations on the be-
havior of withdraw, whereas method transfer is modified because developers
want to fix a bug in the method.

After modification, two failures are observed when developers run the mod-
ified software in Fig. 1(b) with test1 and test2. The failure for test1 is due to
modified Account, whereas the failure for test2 is due to the obsoleteness of this
test. That is, the two failures have different causes (i.e., either in the product
code or in the test code), resulting from developers’ different intentions. As it is
hard to automatically induce developers’ intention based on only the software
and its tests, it is not straightforward to tell whether an observed failure is due
to the product code or the test code. That is, it is a challenging problem to
classify the cause of an observed failure in software evolution. To our knowledge,
our work is the first research that tries to solve this problem.

4 Approach
Despite the difficulty of our target problem, there are still some clues. For exam-
ple, the complexity of the source code, the change information between versions,
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transfer() withdraw()
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(a) Static Call Graph for test1

(b) Static Call Graph for test2

Fig. 2. Static Call Graph for the Tests

and testing information of the regression test failures may be related to the cause
classification of a regression failure. Specifically, as developers are more likely to
make mistakes in complex code, the failure for a regression test whose product
code is complex is more likely due to bugs in the product code than the obsolete
test. For example, as shown by Fig. 2, which shows the static call graphs of
test1 and test2, the product code tested by test1 is complex as many methods
of Account are called during the execution of test1, and thus the failure for
test1 is probably due to bugs in the product code. Furthermore, more frequently
changed and less tested product code is intuitively to be fault-prone. Since it is
difficult to obtain some discriminative rules to classify the cause of an observed
failure based on these clues, we present a machine-learning based technique to
learn a classifier by using the failures whose causes are known.

In the following, we first give an overview of the proposed approach in Sec-
tion 4.1. Then we present the features that we extract from the software under
test and its test code in Section 4.2. Finally, we present how we train the classifier
and use the classifier to classify regression test failures in Section 4.3.

4.1 Overview

In our approach, we view the problem of classifying the cause of a regression
test failure as a problem of learning a classifier based on the data of failure-
related features, which can be extracted and collected by analyzing the software
under test and its test code. Specifically, we adopt a typical machine-learning
algorithm, the Best-first Decision Tree Learning algorithm [47, 48].



In existing software development environment, when a failure occurs in the
execution of a test, there is no place to record whether the cause of the failure is
due to the product code or the obsolete test. To collect failures for training our
classifier, our approach requires developers to record the cause of each failure
when they resolve a regression test failure. After labeling the cause of each
failure, our approach assigns values to seven failure-related features by statically
and dynamically analyzing the software under test and its test code. Using the
failures with their causes and failure-related features, our approach trains a
classifier. Finally, the trained classifier can be used to classify future failures.

4.2 Identified Features

Our approach uses a set of features related to regression test failures to identify
whether the cause of a regression test failure is due to the product code or
the test code. Specifically, we use seven features, which can be further divided
into three categories (i.e., two complexity features, one change feature, and four
testing features).

Complexity Features. The complexity features are concerned with how com-
plex the interaction between the test and the software under test is. Intuitively,
the more complex the interaction is, the more likely the test can reveal a bug
in the software under test. In other words, the more complex the interaction is,
the more likely the failure is due to a bug in the product code.

As our target is Java programs using the JUnit testing framework, we are able
to extract complexity features via statically analyzing the call graph of each test.
As a JUnit test is a piece of executable source code containing testing content
(i.e., a sequence of method invocations), we can determine what methods each
JUnit test invokes and use such information to construct static call graphs for
JUnit tests.

Given a JUnit test that induces a regression test failure, we consider the
following complexity features, which are defined based on the call graph of this
test at the level of methods.

– Maximum depth of the call graph (abbreviated asMaxD).MaxD represents
the length of the longest chain of nested method calls of the JUnit test.
Intuitively, the larger MaxD is, the more complex the interaction between
the test and the software under test is, and thus the more likely the failure
is due to a bug in the product code.

– Number of methods called in the graph (abbreviated asMethodNum), which
is the total number of methods called directly or indirectly by the JUnit test
by counting each method only once. Intuitively, the larger MethodNum is,
the more likely the failure is due to a bug in the product code.

Change Feature. The change feature is concerned with the change between the
current version and its previous version of the software under test. Intuitively,
if the software under test undergoes a substantial revision, it is more likely that
developers want to change some behavior of the software and thus a regression
test failure is more likely due to the obsoleteness of the tests; but if the software



under test undergoes a very light revision, it is more likely that developers do not
want to change the behavior of the software and thus a regression test failure is
more likely due to the product code. To consider this factor, we use the following
change feature in our approach.

– File change (abbreviated as FileChange), which denotes the ratio of modi-
fication on the files that contain the methods called directly or indirectly by
the failure inducing test. For a given test t, we use set F (t) to represent the
set of files that contain the methods called directly or indirectly by t. For a
file f belonging to F (t), we denote its previous version before the revision
as fb and its latter modified version as fl. Furthermore, we use |fb| and |fl|
to represent the number of lines of executable code (i.e., without counting
lines containing only comments and/or blanks) of fb and that of fl, respec-
tively. We then use Change(fb, fl) to denote the number of different lines of
executable code between fb and fl. Specifically, many tools (e.g., the unix
command “Diff”) can be used to compare two files and generate the differ-
ent lines. Finally, we calculate FileChange using the equation in Formula 1.
Intuitively, the more total changes are involved in the call graph of a failure
inducing test, the more likely the failure is due to an obsolete test.

FlieChange(t) =

∑
∀f∈F (t) Change(fb, fl)∑

∀f∈F (t) maximum{|fb|, |fl|}
(1)

Testing Features. The testing features are concerned with the testing results
of all the executed tests. By using these features, our approach is able to consider
the testing results of the whole test suite. In particular, we consider the following
four testing features.

– Type of failure (abbreviated as FailureType), which denotes the type of
the failing testing results returned by JUnit. In particular, FailureType can
be Failure, Compile Error or Runtime Error, where Failure denotes an
assertion that is broken, Compile Error denotes compiling problem when
the compiler fails to compile the source code (including the product code
and the test code) and Runtim Error denotes a runtime exception when
executing the product code with the test code.

– Count of plausible nodes in the call graph (abbreviated as ErrorNodeNum),
which denotes the number of the methods that are called by the given failure
inducing test and by at least another failure inducing test. Intuitively, if the
call graph of the failure inducing test contains many such methods, the cause
of the failure is more likely to lie in the product code than in the test code
because one obsolete test may be unlikely to cause other tests to fail.

– Existence of highly fault-prone node in the call graph (abbreviated as
FaultProneNode), which denotes whether the given failure inducing test
calls a highly fault-prone method. Specifically, we define the highly fault-
prone method as the methods that are called by more than half of the failed
tests. As the highly fault-prone method is likely to contain bugs, the failure
of a test calling such a method is more likely due to this method. That is,
if the call graph of the failure inducing test contains such highly fault-prone



methods, the cause of the failure is more likely to lie in the product code
than in the test code.

– Product innocence (abbreviated as ProInn), which aims to measure the ratio
of innocent product code involved in the call graph of the failure inducing
test. For a given failure inducing test t, we use M(t) to denote the set of
methods called by t. Moreover, for a method m, we use nump(m) to denote
the number of passed tests that call m and num(m) to denote the total
number of tests that call m. Then for any failure inducing test t, we calculate
ProInn using the equation in Formula 2, where k is the smoothing coefficient
and set to be 1 in our approach. If a failure inducing test t has larger ProInn,
most of the product code t calls is innocent (according to Formula 2), and
thus the cause of the failure is more likely to be that t itself is obsolete. That
is, the larger ProInn is for a failure inducing test, the more likely the failure
is caused by an obsolete test in the test code.

ProInn(t) =
∏

∀m∈M(t)

nump(m) + 1

num(m) + k
(2)

Note that, although the collection of data for the four testing features requires
executing the test suite, there is no need to instrument the product code to record
coverage information. Based on the testing results returned by the JUnit testing
framework, the data collection can be done through statically analyzing the call
graph.

4.3 Failure-Cause Classification

We use the following steps to learn the classifier for failure-inducing tests. First,
we collect the failure-inducing tests from the software repository. Second, we
extract the values of the identified seven features and label each failure-inducing
test. Finally, we train a classifier using the failure-inducing tests whose feature
values and failure causes are known.

Collecting Failure-Inducing Tests. When a failure is observed in regression
testing, developers can record the failing tests. Such information can be stored in
the software repository as a part of artifacts during software development. From
the repository, our approach collects these failure-inducing tests, which are the
training instances used to train a failure-cause classifier in this paper.

Determining Feature Values and Failure Causes. For the seven identified
features, we determine their values by analyzing the product code under test
and the tests.

For the complexity features (i.e., MaxD and MethodNum), we calculate
their values using the call graph of the failure inducing test. Specifically, we use
our previous work [38] and its corresponding tool Jtop [67] to implement the
static call graph used in this paper.

To determine the value of FileChange, we first find the methods called by
the failure inducing test, and then use the method signature to identify the
corresponding source code in the previous version and that in the current version.
After matching the two versions, we can calculate the value of FileChange.



The value of FailureType can be directly obtained from the JUnit testing
framework. To calculate the values of ErrorNodeNum, FaultProneNode, and
ProInn, we first obtain the testing results of all tests from the JUnit testing
framework, then mark methods in the call graph of the failure inducing test as
either plausible or innocent, and finally calculate the three values.

To determine the cause of each regression test failure, we require developers
evolving the software to label whether a regression test failure in the training
set is due to the product code or the obsolete test.

Training a Classifier Based on the training set (which contains a set of training
instances with their features and labels), we are able to train a classifier for our
target problem. Specifically, we adopt a typical machine-learning algorithm, the
Best-first Decision Tree Learning algorithm [47, 48]. The Best-first Decision Tree
Learning algorithm is based on a decision tree model, which expands the “best”
nodes first rather than in depth-first order used by C4.5 algorithm [43]. The
“best” node is the one whose split will lead to maximum reduction impurity
among all the nodes.

After training a classifier using the Best-first Decision Tree Learning algo-
rithm, we use the classifier to classify the cause of future failure-inducing tests.

5 Experimental Studies
5.1 Research Questions
We have conducted three empirical studies to investigate the performance of the
proposed approach in three scenarios.

In scenario (1), our approach constructs a classifier based on some regression
test failures for a version of a program and uses the constructed classifier to
classify the causes of other regression test failures for the same version. Thus, the
first research question (RQ1) is as follows: Is our approach effective in classifying
the causes of regression test failures when being applied within one version of
each program?

In scenario (2), our approach constructs a classifier based on regression test
failures for one version of a program and uses the constructed classifier to classify
the causes of regression test failures for the subsequent version of the program.
Thus, the second research question (RQ2) is as follows: Is our approach effective
in classifying the causes of regression test failures when being applied between
two versions of each program?

In scenario (3), our approach constructs a classifier based on one program
and uses the constructed classifier to classify the causes of regression test failures
for another program. Thus, the third research question (RQ3) is as follows: Is
our approach effective in classifying the causes of regression test failures when
being applied across different programs?

5.2 Studied Subjects
In our experimental studies, we used two non-trivial Java programs (i.e., Jfreechart
and Freecol), whose product code and test code are available from SourceForge5.

5 http://sourceforge.net.



Table 1. Subjects in Our Studies

Program Product Code Test Code
#Files #LOC #Classes #Methods #Files #LOC #Classes #Methods

Jfreechart 1.0.0 463 68,761 465 6,028 273 26,847 273 1,751
Jfreechart 1.0.7 538 80,927 540 7,335 356 42,052 356 2,634
Jfreechart 1.0.13 585 91,101 587 8,296 383 47,930 383 3,078
Freecol 0.10.3 578 94,031 579 6,757 85 13,022 85 493
Freecol 0.10.5 602 95,404 603 7,061 87 13,226 87 497

Jfreechart6 is a Java application used to construct graphs and tables. Freecol7

is a software game. Each of these two programs has several available versions
whose test code is written in the JUnit framework. In our experimental studies,
we used only the versions whose release dates are not in the same year so that
the changes between versions are nontrivial.

Table 1 depicts the statistics of these two programs. Specifically, the first four
columns depict the number of files, the total number of lines of executable code
(by removing comments and blanks), the number of classes, and the number of
methods in the product code, whereas the latter four columns depict the number
of files, the total number of lines of executable code, the number of classes, and
the number of methods in the test code.

As our approach is proposed to classify the cause of a regression test failure
as a bug in the product code or an obsolete test, it is necessary to collect these
two types of failures from practice.

Developers usually release a version of the software when its tests cannot
reveal any major faults in this version. Therefore, it is difficult to obtain faults
that cause the regression test fail. Thus we manually injected faults in the prod-
uct code by following some standard procedures [20]. Specifically, we randomly
selected statements scattered in different files of the product code for each pro-
gram and then generated faults by using mutant operators including negating a
decision in conditional statements like “if” and “while”, changing the values of
some constants, and so on. After applying the test suite to the faulty product
code, more failures would appear. We viewed the failures caused by the injected
faults as due to bugs in the product code.

It is accessible to collect obsolete tests in practice. For either Jfreechart or
Freecol, developers have released several versions during its development (as
shown by Table 1). In regression testing, the tests for the old version may become
obsolete for the new version and thus developers may need to modify existing
tests or add new tests. Therefore, to access the obsolete tests in practice, we
applied the test suite for a previous version of each program to the product code
of the current version of the program. As the version of the used test suite is
not consistent with the version of the product code, some tests may fail due to
test obsoleteness. Here, we also refer to obsolete tests as faults in the test code,
since they represent defects of the used test suite.

We summarize the statistical information of the faults in both product code
and test code in Table 2, in which the first column depicts the abbreviation of

6 http://www.jfree.org/jfreechart/.
7 http://www.sourceforge.net/projects/freecol.



Table 2. Faults in Our Studies

Abbreviation Program Test Suite #Tests # Faults # Faults
in Test in Product

J1 Jfreechart 1.0.7 Jfreechart 1.0.0 1,037 9 17

J2 Jfreechart 1.0.13 Jfreechart 1.0.7 1,706 8 18

F Freecol 0.10.5 Freecol 0.10.3 362 82 74

the program, the following two columns depict the product code and the test
code, and the latter three columns depict the number of tests in each test suite,
the number of faults in the test code, and the number of faults in the product
code.

5.3 Experimental Design

After preparing faulty product code and faulty test code, we collected the values
of features of each program by analyzing the call graphs constructed by Jtop8

and the testing results returned by JUnit. Based on the above data, we performed
the following three studies.

In our first study, we constructed a classifier and evaluated the effectiveness
of the constructed classifier by using the instances from the same version of a
program (i.e., Jfreechart 1.0.7, Jfreechart 1.0.13, or Freecol 0.10.5). For each
version of a program, we used all its collected regression test failures, which
are labeled by their causes (i.e., faults in the product code or faults in the test
code), as instances and randomly split all the instances into a training set and
a testing set. To reduce the influence of random selection, we used the 10 fold
cross-validation technique to implement the selection process. Specifically, for
a given set of data whose number of instances (i.e., regression test failures) is
M , the 10 fold cross-validation technique divides the given set into 10 subsets
of data equally so that each subset has M

10 instances. Then the 10 fold cross-
validation technique uses each of these subsets as a testing set and the other
subsets as a training set. In other words, the 10 fold cross-validation technique
randomly selects M∗9

10 instances of the given set as a training set, and takes the
rest instances as a testing set. Moreover, the preceding process has been repeated
10 times within the 10 fold cross-validation technique. Based on each training
set, our approach generates a classifier, which is evaluated by the instances of
the testing set. Specifically, the Best-first Decision Tree Learning algorithm used
in our approach is implemented on Weka 3.6.69, which is a popular environment
for knowledge analysis based on machine learning and supports most machine-
learning algorithms.

In our second study, we constructed a classifier by using the instances from
a version of a program (i.e., Jfreechart 1.0.7) and evaluated the effectiveness of
the constructed classifier by using the instances from the subsequent version of
the program (i.e., Jfreechart 1.0.13). Specifically, we used all the regression test
failures of Jfreechart 1.0.7 as the training set and all the regression test failures

8 Jtop is a test management tool built in our previous research and is accessible at
http://jtop.sourceforge.net/.

9 http://www.cs.waikato.ac.nz/ml/weka/.



of Jfreechart 1.0.13 as the testing set. Based on the training set, our approach
generates a classifier, which is evaluated by the instances of the testing set.

In our third study, we constructed a classifier by using the instances from one
program (i.e., both the two versions of Jfreechart (including 1.0.7 and 1.0.13)
or Freecol 0.10.5) and evaluated the effectiveness of the constructed classifier by
using the instances from another program (i.e., Freecol 0.10.5 or both versions
of Jfreechart). That is, we used all the regression test failures of one program as
a training set and all the regression test failures of another program as a testing
set. Based on each training set, our approach generates a classifier, which is
evaluated by the instances of the testing set.

For each failed test in the testing set, we recorded (1) the number of failures
correctly classified as faults in the product code, and (2) the number of failures
correctly classified as faults in the test code. We then calculated the values of
the metrics in Section 5.4 to evaluate our approach.

5.4 Evaluation Metrics

We used the following metrics to evaluate our approach.

– OverAcc, which denotes the overall accuracy of the proposed approach. This
metric measures the likelihood of our approach to make a correct classifica-
tion considering both causes of regression test failures.

– AccFT , which denotes the accuracy of classifying regression test failures due
to faults in the test code. This metric measures the likelihood of our approach
to make a correct classification considering only regression test failures due
to faults in the test code.

– AccFP , which denotes the accuracy of classifying regression test failures
due to faults in the product code. This metric measures the likelihood of our
approach to make a correct classification considering only regression test
failures due to faults in the product code.

An ideal approach should achieve values close to 1 for the OverAcc metric.
Furthermore, for an ideal approach, the values of AccFT and the values of
AccFP should not differ very much. It is not complete and reliable to compare
two classification approaches based on only AccFT or AccFP . For example,
supposing that there are totally 50 obsolete tests in the test code and 50 faults
in the product code, if we classify all of them to be obsolete tests in the test
code, the AccFT is 100% but its AccFP is 0% and its OverAcc is 50%. This
approach is obviously bad as a good approach should have a high OverAcc with
balanced AccFT and AccFP .

5.5 Threats to Validity

The threat to construct validity comes from the tests whose failures are due
to the product code. It is hard to collect bugs in the product code in software
evolution since developers usually release a software product after fixing bugs
exposed by tests. To reduce this threat, we manually inject faults in the product
code following the standard procedure [20] in software testing and debugging.
The standard procedure is similar to mutant generation. We did not use existing



mutation tools (e.g., MuJava10) to generate mutants because such tools usually
generate a very large number of mutants [63]. The threat to internal validity
comes from our implementation. To reduce this threat, we reviewed all the code
before conducting our experiments. The threats to external validity lie in the
subjects used in the studies and the impact of machine learning. In this paper,
we used five versions of two open source Java programs, which are not neces-
sarily representative of other programs. As we considered three scenarios, the
overall workload of evaluation for our research can be already similar to or even
more than that for an existing piece of research on test repair, from which our
research stems. To further reduce the threat from subjects, we need to evaluate
our approach on larger programs in other language (e.g., C#, C++) with more
failure-inducing tests. Another external threat comes from machine learning, as
our approach constructs a classifier by applying some existing machine-learning
algorithm to some subjects. Although machine learning does not have the power
to identify the cause-effect chain to pinpoint the differentiator between the prod-
uct code and the test code, it is a highly generalizable way to generate a solution
to pinpoint the preceding differentiator. For example, if we construct a solution
based on some observations, the solution can be applicable to only subjects for
which the observations hold. However, as a machine-learning-based approach
has the ability to summarize observations from existing data, we reply on ma-
chine learning instead of inventing a classifier manually. Note that there may
not necessarily be just one same classifier for all different subjects.

6 Results and Analysis
In this section, we first present the results and analysis of the three studies
in Section 6.1, Section 6.2, Section 6.3, then give a sample of decision tree in
Section 6.4, and finally summarize the main findings of our experimental studies
in Section 6.5.

6.1 Study I – Within the Same Version

Fig. 3 presents the results of our first study. Specifically, the top sub-figure
depicts the overall accuracy of classification results (i.e., OverAcc), whereas the
bottom sub-figures depict the accuracy of classification failures due to faults in
the test code (i.e., AccFT ) and the accuracy of classification failures due to
faults in the product code (i.e., AccFP ). For simplicity, we use J1, J2, and F to
represent Jfreechart 1.0.7, Jfreechart 1.0.13, and Freecol 0.10.5. In study I, the
training instances and testing instances are collected from the same version of
a program (i.e., version 1.0.7 of Jfreechart using the test suite of version 1.0.0,
version 1.0.13 of Jfreechart using the test suite of version 1.0.7, version 0.10.5 of
Freecol using the test suite of version 0.10.3).

Concerning the comparison of the overall accuracy (OverAcc) of our ap-
proach with 50%, which can be regarded as a random classification or a blind
guess of failure causes, all of our approach’s OverAcc values for the programs
are are around 80%, much larger than 50%. Furthermore, the values of AccFT
and AccFP are usually close to the corresponding values of OverAcc except for

10 http://cs.gmu.edu/∼offutt/mujava/.
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Fig. 3. Results of Study I

Jfreechart 1.0.7. That is to say, the classifier of our approach constructed by
using one version of a program can usually classify the causes of regression test
failures of the same version quite accurately. Our approach is not very effective
in classifying the faults in the test code of Jfreechart 1.0.7. We suspect the rea-
son to be that Jfreechart 1.0.7 has a small number of tests (test suite of version
1.0.0) and a small number of faults in the test code so as to bias the classification
results.

6.2 Study II – Between Versions

Fig. 4 depicts the results of our second study. The results for Jfreechart 1.0.7 are
based on the training instances collected from version 1.0.7 of Jfreechart (using
the test suite of version 1.0.0) and the testing instances collected from version
1.0.13 of Jfreechart (using the test suite of version 1.0.7).

The OverAcc value of our approach is higher than 50%, which is 96.15%.
That is to say, the classifier constructed using some version of a program may
be used to classify the cause of a regression test failure of another version of the
program. Moreover, the results AccFT and AccFP for Jfreechart 1.0.7 are both
close to 100%.

Furthermore, comparing the classification results of Jfreechart 1.0.13 (whose
training instances and testing instances are all from Jfreechart 1.0.13) in Fig. 3
and those (whose training instances are from Jfreechart 1.0.7 but testing in-
stances are from Jfreechart 1.0.13) in Fig. 4, the results (including OverAcc,
AccFT , and AccFP ) of the program increase. Although the differences between
versions may harm the accuracy of a classifier, more instances are used to train
the classifier in study II than study I, and thus our approach produces better
results in study II than in study I.
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Fig. 4. Results of Study II

6.3 Study III – Across Programs

Fig. 5 depicts the results of our third study, where J is the abbreviation of
Jfreechart (including its 1.0.7, and 1.0.13). The training instances are from ver-
sion 1.0.7 and version 1.0.13 of Jfreechart and the testing instances are from
version 0.10.5 of Freecol, or vice versa.

The OverAcc values of our approach are still higher than 50%, which are
68.18% and 71.15%, respectively. That is to say, our approach can still provide
some help over the baseline. However, comparing to the classification results
in Fig. 3 and Fig. 4, there are significant decreases. Furthermore, when closely
examining the AccFT results and the AccFP results, the former may not be ac-
ceptable, because the values of AccFT are too low. In other words, the approach
classifies too many failures as faults in the product code. We suspect the reason
to be that the two programs used in the training set and in the testing set have
significant differences in their structures so that the training process may have
to face many noises.

The results of our third study are not satisfactory enough to be applied
in practice, but it indicates the possibility that our approach may be applied
between programs by improving the classifier using more features. It should
be noted that cross-program validation is notoriously difficult for mining based
approaches [53, 72]. One possible way to alleviate this drawback is to set up
a multi-program training set to prevent the trained classifier from being too
specific to one program.
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Fig. 5. Results of Study III

6.4 A Decision Tree Sample

Fig. 6 presents a decision tree that are constructed using the all the regression
test failures of Jfreechart 1.0.7 as training instances. In this decision tree, only
three features (i.e., FileChange,MaxD, and ErrorNodNum) have contribution
to differentiate the faults in the test code and the faults in the product code.
In particular, if the values of FileChange are smaller than 9.0, the causes of
regression test failures are classified as faults in the product code; if the values
of FileChange are no smaller than 9.0 and the values of MaxD are no smaller
than 11.5, the causes of regression test failures are also classified as faults in the
product code; if the values of FileChange are no smaller than 9.0 and the values
of MaxD are smaller than 11.5 and the values of ErrorNodeNum are smaller
than 8.5, the causes of regression test failures are classified as faults in the test
code. If the values of FileChange are no smaller than 9.0 and the values of
MaxD are smaller than 11.5 and the values of ErrorNodeNum are no smaller
than 8.5, the causes of regression test failures are not clear and may be classified
as faults in the product code or in the test code. We did not present the decision
trees generated in the three studies due to the large number of generated decision
trees.

6.5 Summary

In summary, the main findings of our experimental studies are as follows.

– First, our approach produces acceptable results when the training instances
and the testing instances are from the same version of one program or from
the different versions of one program.
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– Second, when the training instances and the testing instances are from dif-
ferent programs, our approach is not as effective as being applied in the same
program.

According to the two findings, our machine-learning based approach is generally
effective to classify causes of regression test failures when the training instances
and the testing instances are from the same program (including different versions
and the same versions).

7 Discussion
In this section, we will discuss some issues that are related to our approach.

Adjustment of Features. Although our approach uses only seven features
to construct a classifier, more features may be added to improve the effective-
ness of the approach. Specifically, the complexity features and the change fea-
ture are collected by static analysis, whereas the testing features are collected
by lightweight dynamic analysis. Dynamically collected features and statically
collected features are complementary, and we will consider their cost and effec-
tiveness in constructing a classifier in our future work. Furthermore, the seven
features are intuitively correlated with the cause of a regression test failure, but
our experimental studies did not investigate the impact of each feature on the
classification results. Moreover, our intuition that how each feature impacts the
classification results (e.g., a regression test failure is more likely due to buggy
product code if the corresponding test has a small value of FileChange) is not
encoded in the classifier since our intuition may not be consistent with the actual
practice. To learn explicitly the contribution of each feature on classification re-
sults, we will conduct more experiments on various combination of these features
in the future.

Applicability of Fault Localization Techniques. Our preliminary exper-
imental results show that existing fault localization approaches can hardly be
directly used to solve the problem of this paper. Conceptually, fault localization,
especially spectrum-based fault localization approaches may be extended to solve
the problem in this paper. Therefore, we conducted a preliminary experimental
study on two programs (with the same seeded faults) and their test suites in
Table 2 using Tarantula [27], which is an effective and widely used spectrum-
based fault localization approach. For each program and its test suite, Tarantula
generates a ranked list of suspicious methods based on the descendent order of



Table 3. Results of Tarantula in Classifying Test Failures

Program Faults in the Test Code Faults in the Product Code
–Test Suite #Total #Correct #Wrong #Miss #Total #Correct #Wrong #Miss

Jfreechart 1.0.7
– Jfreechart 1.0.0 9 4 2 3 17 0 2 15
Jfreechart 1.0.13
– Jfreechart 1.0.7 8 1 7 0 16 15 0 1

Freecol 0.10.5
– Freecol 0.10.3 82 0 14 68 74 0 1 73

their suspiciousness, which measures the possibility that the methods contain
faults. Formally, the ranked list of suspicious methods is denoted as m1, m2, . . .,
mn, where mi and mj (1 ≤ i, j ≤ n) denotes any methods of the program and
its test suite. Supposed that sus(mi) and sus(mj) represent the suspiciousness
of methods mi and mj , respectively, then sus(mi) ≤ sus(mj) iff j ≤ i. If m1 is a
method in the product code and any method mk in the test code satisfying that
sus(m1) > sus(mk), we deem that the faults are in the product code; if m1 is a
method in the test code and any method mk in the product code satisfying that
sus(m1) > sus(mk), we deem that the faults are in the test code; otherwise, it
is not clear where the faults are since both the method in the product code and
the method in the test code have the largest suspiciousness. Based on this as-
sumption, the classification results of Tarantula can be summarized as Table 3,
where #Total shows the total number of faults in either the test code or the
product code, #Correct shows how many faults (in either the test code or the
product code) have been correctly classified by Tarantula, #Wrong shows how
many faults have been incorrectly classified by Tarantula (i.e., the faults in the
test code have been classified as faults in the product code, or the faults in the
product code have been classified as faults in the test code), and #Miss shows
how many faults (in either the test code or the product code) cannot be clearly11

classified by Tarantula. According to this table, Tarantula can hardly precisely
classify the cause of a failed test in most cases, especially when the faults are
due to an obsolete test. Therefore, existing fault localization approaches cannot
be directly applied to solve the problem in this paper. In the future, we will
consider how to utilize the results of fault localization approaches to improve
the classification.

Impact of Structure Changes. To collect the change feature, our approach is
required to identify changes between versions, but some structural changes (e.g.,
renaming) may cause noise in matching the entities between versions. Changes
on the program’s behavior should be manifested on its test case, whereas changes
only on the program’s structure may not. Therefore, it is important to precisely
map the entities between versions so as to reduce the noise in gathering the
change feature. Refactoring [11, 49] is an important type of changes in object-
oriented software, which changes the structure of a program without affecting
its behavior [13]. As there exist many refactoring tools [10, 55], we will use these

11 Sometimes methods in the product code and methods in the test code are assigned
with the same suspiciousness and thus Tarantula cannot tell whether the faults are
due to the test code or the product code.



tools to match entities between versions in collecting the change feature so as to
reduce the noise resulting from some structure changes in the future.

Other Machine-Learning Algorithms. In this paper we present and eval-
uate our approach using a typical machine-learning algorithm (i.e., Best-first
Decision Tree algorithm), but there exist many machine-learning algorithms in
the literature. Besides Best-first Decision Tree algorithm, we have implemented
our approach using another algorithm the Naive Bayes algorithm [39], and found
that the latter was much worse than the former. Besides machine-learning algo-
rithms, there are many other factors (e.g., size of samples) that may influence
the effectiveness of the proposed approach. As this paper is only a first step
on classifying the cause of a regress test failure, we will further investigate the
impact of these factors in our future work.

8 Conclusions and Future Work
In software evolution, when we apply an existing test suite to the modified soft-
ware, some regression tests may fail. The failures of these regression tests may
be due to buggy product code or obsolete test code. Before applying existing de-
bugging techniques in the product code or test-repair techniques, it is necessary
to determine whether a failure is due to the bug in the product code or obsolete
tests. In this paper, we propose a machine-learning based approach, which col-
lects values of seven features that may be related to failures of regression tests
and then constructs a classifier by using a machine-learning algorithm (i.e., the
Best-first Tree Learning algorithm). Furthermore, we evaluated this approach in
three scenarios and found that the overall accuracy of our approach on correctly
classifying regression failures is mostly about 80% when being applied within a
program.

In future, we will identify more failure-related features to further improve
the classification accuracy. We will also evaluate the proposed approach on a
variety of projects written in different programming languages. As the empirical
study did not evaluate the effectiveness of the given features on classification, we
will evaluate which features play a leading role in the classification in our future
work. Furthermore, we will work on the feasibility of establishing a discrimina-
tive model, aiming at classifying the causes of regression test failures based on
features.
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