
Robust Log-Based Anomaly Detection on Unstable Log Data
Xu Zhang∗

Microsoft Research
Beijing, China

Nanjing University
Nanjing, China

Yong Xu
Qingwei Lin
Bo Qiao

Microsoft Research
Beijing, China

Hongyu Zhang
University of Newcastle
Callaghan, Australia

Yingnong Dang
Microsoft Azure
Redmond, USA

Chunyu Xie
Microsoft Research

Beijing, China

Xinsheng Yang
Qian Cheng

Ze Li
Microsoft Azure
Redmond, USA

Junjie Chen
College of Intelligence and

Computing, Tianjin
University

Tianjin, China

Xiaoting He
Microsoft Research

Beijing, China

Randolph Yao
Microsoft Azure
Redmond, USA

Jian-Guang Lou
Microsoft Research

Beijing, China

Murali Chintalapati
Microsoft Azure
Redmond, USA

Furao Shen
Nanjing University
Nanjing, China

Dongmei Zhang
Microsoft Research

Beijing, China

ABSTRACT
Logs are widely used by large and complex software-intensive
systems for troubleshooting. There have been a lot of studies on
log-based anomaly detection. To detect the anomalies, the existing
methods mainly construct a detection model using log event data
extracted from historical logs. However, we find that the existing
methods do not work well in practice. These methods have the
close-world assumption, which assumes that the log data is stable
over time and the set of distinct log events is known. However,
our empirical study shows that in practice, log data often con-
tains previously unseen log events or log sequences. The instability
of log data comes from two sources: 1) the evolution of logging
statements, and 2) the processing noise in log data. In this paper,
we propose a new log-based anomaly detection approach, called
LoдRobust . LogRobust extracts semantic information of log events
and represents them as semantic vectors. It then detects anomalies
by utilizing an attention-based Bi-LSTM model, which has the abil-
ity to capture the contextual information in the log sequences and
automatically learn the importance of different log events. In this
way, LogRobust is able to identify and handle unstable log events
and sequences. We have evaluated LogRobust using logs collected

∗zhangxu037@smail.nju.edu.cn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338931

from the Hadoop system and an actual online service system of Mi-
crosoft. The experimental results show that the proposed approach
can well address the problem of log instability and achieve accurate
and robust results on real-world, ever-changing log data.

CCS CONCEPTS
• Software and its engineering→ Maintaining software.

KEYWORDS
Anomaly Detection, Log Analysis, Deep Learning, Log Instability,
Data Quality

ACM Reference Format:
Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, Junjie Chen, Xiaoting He,
Randolph Yao, Jian-Guang Lou, Murali Chintalapati, Furao Shen, and Dong-
mei Zhang. 2019. Robust Log-Based Anomaly Detection on Unstable Log
Data. In Proceedings of the 27th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3338906.3338931

1 INTRODUCTION
Large and complex software-intensive systems, such as online ser-
vice systems and big data systems, produce logs for troubleshooting.
The log messages are usually semi-structured text strings, which
are used to record events or states of interest. Engineers can ex-
amine recorded logs to understand the status of software systems,
detect system anomalies and locate the root causes. Because of its
simplicity and effectiveness, logging has been commonly adopted
in practice. For example, an empirical study [47] on two Microsoft

807

https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/3338906.3338931

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Xu Zhang et al.

systems and two open source projects shows that logging is com-
monly used. Statistically, there is one line of logging code in every
58 lines of source code.

As the scale and complexity of the system increase, it is becoming
more difficult to detect system anomalies by manual examination
of the logs. Over the years, many automated log-based approaches
have been proposed to detect system anomalies [3, 10, 18, 29, 44].
These work retrieve useful information from logs and adopt data
mining and machine learning techniques to analyze log data and
detect the occurrence of system anomalies. For example, Xu, et
al. [44] formulated the log-based anomaly detection problem as an
unsupervised learning problem and utilized Principal Component
Analysis (PCA) to detect anomalies. Lou, et al. [31] mined the in-
variants from console logs, where a system anomaly is detected if
the occurrences of log events break a certain invariant during the
lifecycle of the system execution.

Although effective, the existing log-based anomaly detection
approaches are not sufficiently robust in practice. To detect anom-
alies, almost all existing approaches require to construct a detection
model using the known log events (i.e., the templates of log mes-
sages) and log sequences (i.e., series of log events that record specific
execution flows) extracted from the training data. They fail to work
with previously unseen log events and log sequences. However,
our empirical study has found that real-world log data is unstable ,
meaning that new but similar log events and log sequences often
appear.

We have identified the following two sources of instability in
real-world log data:

(1) Evolution of logging statements: Like other software arti-
facts, logs are always evolving. Developers may frequently
modify source code including logging statements, which in
turn leads to changes to log data. As Kabinna, et al. [24]
observed, around 20%∼45% of logging statements in their
studied projects changed throughout their lifetime. Many
new log events and log sequences are generated by the ever-
changing logging statements. It was reported that Google’s
systems have up to thousands of new log printing statements
every month [42]. Therefore, log-based anomaly detection
approaches must be able to cater to the evolution of log data.
This is especially important for organizations that adopt the
Continue Delivery/Deployment approaches [6, 22].

(2) Processing noise in log data: During collection, retrieval, and
pre-processing of log data, it is inevitable that a certain de-
gree of noise is introduced into the original log data. For
example, the noise could come from the data collection pro-
cess. In a large-scale system, many logs are produced by
geographically distributed components separately and then
uploaded to a centralized location for further analysis. Miss-
ing, duplicated, or disordered log messages could be resulted
from such a process (e.g., due to network errors, limited
system throughput, storage issues, etc.). Another important
source of noise comes from log parsing. In general, an early
step of log data analysis is to extract the log events from the
raw log messages using a log parser. However, it has been
observed that the existing log parsers are not sufficiently
accurate [17], which could lead to many misidentified log

events. The noise in log data hampers the effectiveness of
the existing log-based anomaly detection approaches.

To investigate the log instability issue, we have performed an
empirical study on log data produced by a large-scale online service
system of Microsoft. We find that unstable log data is very common
in real-world systems. The details of the study are reported in
Section 2.2.

Due to the instability of log data, the effectiveness of the existing
anomaly detection approaches is significantly affected. The existing
approaches are based on a close-world assumption: the patterns of
log events and log sequences are constant, which is not practical in
real-world systems where unstable log events and sequences always
appear. On the one hand, a small change to an existing log event
(as shown in Figure 3) can introduce a different but semantically
similar one, which is recognized by existing approaches as a brand
new log event [10, 18, 29, 44]. Therefore, existing approaches will
either fail to work due to the incompatibility with these unseen log
events, or result in low performance due to the incorrect classifica-
tion. On the other hand, log sequences are also likely to be changed
due to new execution paths or processing noise. However, tradi-
tional approaches only leverage the occurrence information of log
sequences and ignore its context attribute and different importance
of logs. It is also worth noting that a large-scale online service
system is always under active development and maintenance, the
log data could change frequently. Therefore, it is unpractical to
update log-based anomaly detection tools continuously due to the
large amount of effort it requires. A detailed discussion of existing
approaches will be given in Section 2.3 .

To overcome the instability issue, in this paper, we propose
LogRobust, a novel log-based anomaly detection approach, which
can achieve accurate and robust anomaly detection on real-world,
ever-changing and noisy log data. Unlike the existing approaches,
LogRobust does not rely on the simple occurrence information of
log events. Instead, it transforms each log event into a semantic vec-
tor of the fixed dimension. Semantic vectors are capable of capturing
the semantic information embedded in log events. Through seman-
tic understanding, this representation method is able to identify
and handle new but similar log events that emerge from evolv-
ing logging statements and parsing errors. Then, taking the se-
quence of semantic vector as input, an attention-based Bidirectional
Long-Short-Term Memory Neural Network (Bi-LSTM) classifica-
tion model is applied to detect the anomalies. The attention-based
Bi-LSTM model has the ability to capture the contextual informa-
tion in the log sequences and automatically learn the importance
of different log events. Thus, it is robust to the variations in the
sequences.

We have evaluated the proposed approach using the public log
data collected from Hadoop. We inject different ratios of changes
to the Hadoop log data and evaluate the effectiveness of the pro-
posed approach. The experimental results show that LogRobust is
robust: when the injection rate is increased from 5% to 20%, the
F1-score is only slightly decreased from 0.96 to 0.89. We have also
applied LogRobust to the industrial log data collected from a large-
scale online service system of Microsoft with real instability issue.
LogRobust achieves F1-Score of 0.84, which is 30% higher than
other traditional methods. The experimental results show that the

808

Robust Log-Based Anomaly Detection on Unstable Log Data ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

proposed approach can effectively detect anomalies of the online
service system, with the ever-changing and noisy log data.

The main contributions of this paper are as follows:
(1) We point out the problem of log instability in log-based

anomaly detection. We also conduct an empirical study on
log instability in real-world systems to confirm our findings.

(2) We propose LogRobust, a new log-based anomaly detection
approach, which is robust to the unstable log data. To our
best knowledge, we are the first to address the instability
issue of log data in anomaly detection.

(3) We have evaluated LogRobust using both public and real-
world industrial datasets. The results confirmed the effec-
tiveness of our approach.

The remainder of this paper is organized as follows:We introduce
the background of our work and an empirical study of unstable
log data in Section 2. Section 3 describes our approach. Section 4
presents our experimental design and results. Section 5 discusses
the incremental updating of our LogRobust and the threats to
validity. Section 6 surveys related work followed by Section 7 which
concludes this paper.

2 BACKGROUND AND EMPIRICAL STUDY
2.1 Log Terminology

Raw Log Msg. Seq. #3(blk_527787503483342113)
Raw Log Msg. Seq. #2(blk_7503483334211331202)

Raw Log Msg. Seq. #1(blk_7503483334202473044)

1 Receiving block blk_7503483334202473044 src:
/10.251.215.16:55695 dest: /10.251.215.16:50010

2 Receiving block blk_7503483334202473044 src:
/10.250.19.102:34232 dest: /10.250.19.102:50010

3 Receiving block blk_7503483334202473044 src:
/10.251.71.16:51590 dest: /10.251.71.16:50010

.

14 10.251.215.16:50010 Served block
blk_7503483334202473044 to /10.250.19.102

Log Sequence #3
Log Sequence #2

Log Sequence #1

1 Receiving block * src: * dest: *

2 Receiving block * src: * dest: *

3 Receiving block * src: * dest: *

.

14 * Served block * to *

Parsing

(a) Raw Log Messages (b) Log Events

Figure 1: An Example of Raw Log Messages, Log Events and
Log Sequence

Logs, which contain abundant information (e.g., events, parame-
ters, execution details, etc.) about the running status of a software-
intensive system, play a crucial role in the maintenance of online
service systems. Once a problem/anomaly occurs, engineers often
rely on system logs for further investigation.

Figure 1 shows an example of log data from the public HDFS
dataset [43]. Each line printed to the system console is a log message.
Here we omit some fields for clarity. Each log message consists of a
constant part (log event) and a variable part (log parameter). The
log parameter records some system attributes (e.g., URL, file name
or IP address, etc.). The log event is comprised of fixed text strings
and is a template of a log message. A log event is acquired from a
log message through log parsing.

A log sequence consists of a sequence of log events which records
an execution flow of a specific task. Log events from the same log
sequence share the same task ID, which can be used to link the
events chronologically. Figure 1b shows an example of log sequence
with the task ID blk_7503483334202473044.

2.2 An Empirical Study on Log Instability
In this section, we describe an empirical study in real-world indus-
trial scenarios, which demonstrates the problem of log instability
and reveals the subsequent consequences it causes.

2.2.1 Evolution of Logging Statements. We study log evolution on
a real-world online service system Service X from Microsoft. We
identify evolving log events by analyzing the changes to logging
statements in the source code. We use the statistics of log events in
version 1.0 as the baseline and observe the changes in the numbers
of new versions. The results are shown in Figure 2. It can be seen
from Figure 2a that there are a lot of newly added log events in
newer versions (the blue line). In addition, some old log events are
also removed from the source code (the black line) and a part of
original log events have been modified in the new versions (the
red line). Furthermore, we can see from the Figure 2b that the total
number of log events keeps increasing, from 2,204 in version 1.0 to
2,763 in version 8.0. The unchanged log events are becoming less
and less in the newer versions. In the latest version (version 8.0),
the number of changed log events accounts for 30.3% of the total
log events.

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

200

400

600

Versions

Log Event

Added
Removed
Modified

(a) Changed log events

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

1,800

2,100

2,400

2,700

Versions

Log Event

Total
Unchanged

(b) All log events

Figure 2: The Evolution of Log Events across Versions

Figure 3 gives some real cases of evolving log events from Service
X in Microsoft, where the two log messages before and after the
changes are given.

Case 1:
Creating and opening new * channel factory

Creating and opening new * channel factory for bindingId *

Case 2:
{"Result":* "BaseHash":* UploadHash":* TipHash":* NewTipHash":* }

MiniMerge: {"Result":* "BaseHash":* UploadHash":* TipHash":* NewTipHash":* }

Case 3:
PutSharedRemoteServiceLocation - Entering with inputs [LocationType: *]
[SrsLocation: [Server: *] [Cluster: *] [Session: *] [BackupServer: *] [Back-
upSession: *] [Environment: *] [IsADocumentSession: *]] [IsClear: *]

PutSharedRemoteServiceLocation - Entering with inputs [LocationType: *]
[SrsLocation: [Server: *] [Cluster: *] [Session: *] [BackupServer: *] [Back-
upSession: *] [Environment: *]] [IsClear: *]

Figure 3: Examples of Evolving Log Events

• Case 1: Two new words (“for bindingId”) are added to the
original log event as a supplementary explanation for clarity.

809

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Xu Zhang et al.

• Case 2: A keyword (“MiniMerge”) is prepended to the original
log event to indicate the program execution stage.

• Case 3: A keyword (“IsADocumentSession”) is removed as
the related feature is deprecated.

We also study the evolving log sequence in Service X. We collect
log data from two days spanning about one month. We notice that
the amount of new log sequences accounts for more than 90% of
the total dataset, which indicates that almost all log sequences have
changed during a month time. After further analysis, we found
84.2% new log sequences are caused by a new added log event
"Setting OCSSession as *". Other new log sequences are caused by
brand new execution paths.

2.2.2 Processing Noise. Processing noise is introduced during col-
lection, retrieval, and pre-processing of log data, which are not
truly anomalies of the system. For example, inaccurate log parsing
can hamper the performance of an anomaly detection model [17].
Log parsing is one of early steps in log data analysis. He, et al. [17]
evaluated four commonly used log parsers, including SLCT [40],
IPLoM [32], LKE [12] and LogSig [39]. Zhu, et al. [48] tested 13
log parsers on a total of 16 datasets. They all found that existing
log parsers are not sufficiently accurate. These log parsers could
perform very differently on different datasets. For example, the
LogSig [39] parser could achieve an accuracy of 0.91 inHDFS dataset
but only 0.26 in BGL dataset [17]. In [48], LogSig can achieve ac-
curacy of 0.967 in Proxifier dataset but only 0.169 in Linux dataset.
More importantly, He, et al. also pointed out that log mining is
sensitive to some critical events [17]. They claimed that 4% errors
in parsing could even cause an order of magnitude performance
degradation in anomaly detection (from 40% to 3.7%).

We also perform a study on Service X system using a commonly-
used log parser, Drain [19]. We randomly sample 7,401 Service X
log messages generated from 82 log events, and apply Drain to
parse them. We find that 1,377 log messages are incorrectly parsed,
which account for 18.6% of the total log messages. Most of parsing
errors are caused by missing/adding a few keywords from/into log
events. Figure 4 illustrates two examples of parsing error in Service
X log data. The ground truth log events and parsing results are
given, respectively.

• Case 1: Log parser omits one keyword “resize” compared to
the ground truth log event.

• Case 2: Log parser misidentifies parameter "rtc" as a keyword
of the log event.

These parsing errors lead to many extra log events, which are
not conducive to the follow-up analysis.

Case 1:
HttpRequestAsync::EnsureBuffer - allocated:* resize:*

HttpRequestAsync::EnsureBuffer - allocated:*

Case 2:
Skipping update of with app alias [*]

Skipping update of with app alias [rtc]

Figure 4: Examples of Log Parsing Error

Raw Log
Messages

Log Msg. Seq. #3

Receiving block blk_. . .
Packet Responder for. . .
Receiving block blk_. . .
10.251.215.16:50010 . . .
. . .

Log Msg. Seq. #2

Receiving block blk_. . .
Packet Responder for. . .
Receiving block blk_. . .
10.251.215.16:50010 . . .
. . .

Log Msg. Seq. #1

Receiving block blk_. . .
Packet Responder for. . .
Receiving block blk_. . .
10.251.215.16:50010 . . .
. . .

Parse

Log
Sequences

Log Event #3

Receiving block * s
Packet Responder *
Receiving block * s
* Served block * to
. . .

Log Event #2

Receiving block * s
Packet Responder *
Receiving block * s
* Served block * to
. . .

Log Event #1

Receiving block * s
Packet Responder *
Receiving block * s
* Served block * to
. . .

Count

Log Count
Vectors

Count Vector #3

[0.2, 0.4, . . ., 0.1]
Count Vector #2

[0.2, 0.4, . . ., 0.1]
Count Vector #1

[0.2, 0.4, . . ., 0.1]
Train

Detection
Models

IM PCA

SVM LR
. . .

Figure 5: The Overview of Traditional Approaches

2.3 Limitation of Existing Methods
Over the years, there are many studies focused on log-based anom-
aly detection [3, 10, 18, 29, 31, 44]. Some exemplary approaches are
as follows:

• IM: Lou, et al. [31] proposed Invariant Mining (IM) to mine
the invariants (linear relationships) among log events from
log count vectors. Those log sequences that violate the in-
variants are considered as anomalies.

• PCA: Xu, et al. [44] constructed normal space and anoma-
lous space of log count vectors using Principal Component
Analysis (PCA) to detect anomalies. If a log count vector is
far from the normal space, it is considered as an anomaly.

• SVM and LR: [18, 29] represented log sequences as log count
vectors and applied supervised learning algorithms to detect
anomalies. In their papers, they train the classifier models us-
ing Support Vector Machine (SVM) and Logistic Regression
(LR).

The existing approaches mentioned above have many common
characteristics. Figure 5 illustrates the overview of these approaches.
They all transform the log sequences into log count vectors, then
build unsupervised or supervised machine learning models on it to
detect anomalies. Here a log count vector holds the occurrence of
each log event in a log sequence. The dimension of the log count
vector is equal to the number of distinct known log events.

Due to the log instability issue, the limitation of this method is
obvious. Firstly, it is incompatible with unstable log events. Even
if only one unstable log event occurs (e.g., caused by evolving
logging statement or parsing error), the dimension of log count
vector must be changed and the model also needs to be retrained
accordingly. Secondly, log count vector only counts the number
of log events thus it ignores the context information embedded
in the log sequences and cannot identify the different importance
of various log events. Thirdly, to update the log-based anomaly
detection tools, continuous model re-training is required, which
could incur unacceptable cost for a large-scale software system that
is under active development and maintenance. Therefore, it is also
impractical to update the existing anomaly detection tools in an
online manner. As a consequence, the existing approaches will
either fail to work, or result in low detection accuracy.

3 LOGROBUST: AN APPROACH TO ROBUST
LOG-BASED ANOMALY DETECTION

To overcome the instability problem of real-world log data, we
propose LogRobust, a novel log-based anomaly detection approach.
The overview of LogRobust is shown in Figure 6. The first step is
log parsing. After that, LogRobust does not rely on the log count

810

Robust Log-Based Anomaly Detection on Unstable Log Data ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Training
log data

New
log data

Log Msg. Seq. #3

Receiving block blk_. . .
Packet Responder for. . .
Receiving block blk_. . .
10.251.215.16:50010 . . .
. . .

Log Msg. Seq. #2

Receiving block blk_. . .
Packet Responder for. . .
Receiving block blk_. . .
10.251.215.16:50010 . . .
. . .

Log Msg. Seq. #1

Receiving block blk_. . .
Packet Responder for. . .
Receiving block blk_. . .
10.251.215.16:50010 . . .
. . .

Log Event #3

Receiving block * s
Packet Responder *
Receiving block * s
* Served block * to
. . .

Log Event #2

Receiving block * s
Packet Responder *
Receiving block * s
* Served block * to
. . .

Log Event #1

Receiving block * s
Packet Responder *
Receiving block * s
* Served block * to
. . .

parsing

Log Parsing

Log Event #3

Receiving block * s
Packet Responder *
Receiving block * s
* Served block * to
. . .

Log Event #2

Receiving block * s
Packet Responder *
Receiving block * s
* Served block * to
. . .

Log Event #1

Receiving block * s
Packet Responder *
Receiving block * s
* Served block * to
. . .

Sem. Vector #3

[0.2, 0.4, . . ., 0.1]
[0.3, 0.8, . . ., 0.5]
[0.1, 0.9, . . ., 0.7]
[0.6, 0.2, . . ., 0.6]
. . .

Sem. Vector #2

[0.2, 0.4, . . ., 0.1]
[0.3, 0.8, . . ., 0.5]
[0.1, 0.9, . . ., 0.7]
[0.6, 0.2, . . ., 0.6]
. . .

Sem. Vector #1

[0.2, 0.4, . . ., 0.1]
[0.3, 0.8, . . ., 0.5]
[0.1, 0.9, . . ., 0.7]
[0.6, 0.2, . . ., 0.6]
. . .

Pre-processing

Word Vectorization

TF-IDF Aggregation

Semantic Vectorization
x1

LSTM

LSTM

Attention

x2

LSTM

LSTM

Attention

Attention-based Bi-LSTM

Train Predict

Figure 6: The Overview of LogRobust

vector like what the existing methods [3, 18, 29, 31] do. Instead, it
transforms each log event into a vector by considering its semantic
information. We call it Semantic Vectorization. In this way, even
though a log event is changed during the evolution (or introduced
by processing noise), it can be still represented as a similar vector
to the original log event. Therefore, our approach is able to han-
dle unstable log events. After semantic vectorization, LogRobust
leverages the attention-based Bi-LSTM neural network [21] to de-
tect the anomalies, which can capture the contextual knowledge
of log sequence and learn to assign various degrees of importance
to different log events. In this way, our approach is able to handle
unstable log sequences.

Overall, LogRobust consists of three steps: log parsing (Sec-
tion 3.1), semantic vectorization (Section 3.2), attention-based clas-
sification (Section 3.3). Also, we present the usage of LogRobust in
Section 3.4.

3.1 Log Parsing
Since raw log messages are unstructured data and contain much
specific information (e.g., IP address, file name, etc.) that can hinder
automatic log analysis [18], LogRobust needs to parse each log mes-
sage to extract its log event by abstracting away the parameters in
the message. In this way, the log messages become structured data,
which facilitates follow-up analysis. Considering accuracy and effi-
ciency, LogRobust adopts Drain [19] method to conduct log parsing.
Drain is proposed in [19] and is characterized by its high parsing
accuracy and efficiency. In fact, it achieves the best performance
compared with other related methods evaluated in [48]. Thus, we
choose this method to conduct log parsing. For example, in Figure 1,
the first raw log message “Receiving block blk_7503483334202473044
src:/10.251.215.16:55695 dest:/10.251.215.16:50010” is parsed into the
log event “Receiving block * src: * dest: *”. It is worth noting that
the parsing process of Drain may also introduce the noise due to
its inaccuracy, but our approach can handle this problem (to be
described in the following subsections).

3.2 Semantic Vectorization
LogRobust extracts the semantic information of log event and trans-
forms each log event into a fixed-dimension vector (we call it seman-
tic vector), regardless of whether the log event exists before. The
workflow of semantic vectorization is shown in Figure 7, which con-
sists of three steps: pre-processing of log event, word vectorization,
and TF-IDF based aggregation.

3.2.1 Pre-processing of Log Events. To capture the semantics of log
events, LogRobust treats a log event E as a sentence in natural lan-
guage, denoted as S = [t1, t2, ...tN], where ti , i ∈ [1,N] represents
the i-th token and N is the length of the log-event sentence. Most
tokens are valid English words, which have their own meanings.
However, there are also some non-character tokens and many vari-
able names in a log event. LogRobust conducts pre-processing for
each log-event sentence as follows.

We firstly remove all non-character tokens from log-event sen-
tences S , such as delimiters, operators, punctuation marks, and
number digits. Then we remove all the stop words such as “a”,
“the”, etc. Finally, some variable names in log events are actually
a concatenation of words. For example, the variable name “Type-
Declaration” contains two words: “type” and “declaration”, and
the variable name “isCommitable” is composed of two words: “is”
and “Commitable”. LogRobust splits these composite tokens into
individual tokens according to Camel Case [9].

3.2.2 Word Vectorization. After pre-processing, LogRobust trans-
forms each log-event sentence S into a semantic vector V . The
transformation should satisfy the following two requirements:

• Discrimination: Semantic vectors should be able to represent
different log events with high discrimination. For example,
“Receiving block * src: * dest: *” and “PacketResponder * for
block * terminating” are two different log events, thus their
corresponding semantic vectors should be different. For-
mally, it means that the cosine similarity between the two
vectors should be low.

• Compatibility: Semantic vectors should be able to identify
unstable log events with similar semantics. For example,
when a log event is changed from “Receiving block * src:
* dest: *” to “Receiving block * src: * dest: * time: * content
*” during the evolution, both of them actually have similar
semantics. Therefore it is important to represent them as
similar vectors.

In order to meet the above two requirements, LogRobust inte-
grates the semantic information of log events into the vectorization.
Specifically, LogRobust leverages off-the-shelf word vectors, which
were pre-trained on Common Crawl Corpus dataset using the Fast-
Text algorithm [23], to extract the semantic information from the
English vocabularies. FastText can sufficiently capture the intrinsic
relationship (i.e., semantic similarity) among words in natural lan-
guage andmap eachword to ad-dimension vector (whered = 300 in
FastText word vectors). After replacing words with corresponding
vectors, a log-event sentence S is transformed into word vectors list
L = [v1,v2, ...,vN], where vi ∈ Rd , i ∈ [1,N] denotes the word
vector, N is the number of tokens in a log-event sentence.

811

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Xu Zhang et al.

Semantic Vector Seq. #3Semantic Vector Seq. #3
Semantic Vector Seq. #2

Semantic Vector Seq. #1

[0.33, 0.28, 0.96, …, 0.73]

[0.41, 0.46, 0.77, …, 0.23]

[0.41, 0.46, 0.77, …, 0.23]

[0.24, 0.66, 0.85, …, 0.68]

…

1

2

3

14

…

Log Sequence #3Log Sequence #3
aLog Sequence #2

Log Sequence #1

Receiving block * src * dest *

Receiving block * src * dest *

* Served block * to *

…

1

2

3

14

...

Log Sequences

Semantic Vector Sequences

Receiving block * src * dest * Pre-Processing

TF-IDF

[0.82, 0.39, 0.65, …, 0.17]

[0.79, 0.95, 0.84, …, 0.02]

[0.22, 0.61, 0.64, …, 0.83]

[0.11, 0.07, 0.78, …, 0.21]

[0.82, 0.39, 0.65, …, 0.17]

[0.79, 0.95, 0.84, …, 0.02]

[0.22, 0.61, 0.64, …, 0.83]

[0.11, 0.07, 0.78, …, 0.21]

destsrcblockreceiving destsrcblockreceiving

Word Vectorization

0.09

0.45

0.14

0.32

0.09

0.45

0.14

0.32

w4

w3

w2

w1

w4

w3

w2

w1

0.09

0.45

0.14

0.32

w4

w3

w2

w1

v4

v3

v2

v1

v4

v3

v2

v1

∑wivi

Figure 7: The Work Flow of Semantic Vectorization

3.2.3 TF-IDF Based Aggregation. Next, LogRobust represents a log
event as a fixed-dimension vector by aggregating all N word vec-
tors in L. In this way, even though the numbers of words (i.e., N) in
different log events are varying, the dimension of the semantic vec-
tors are fixed (i.e., d). Here LogRobust applies weighted aggregation
using TF-IDF [36], which is a widely-used method in information
retrieval. The TF-IDF weight can effectively measure the impor-
tance of words in sentences, which exactly serves the requirement
of high discrimination. For example, if the word “Block” appears
frequently in a log event, it means that this word may be more
representative for this log event. We thus use the Term Frequency
(TF) to describe its importance, where TF (word) = #word

#total , #word
is the number of target word in a log event, #total is the number of
all words in a log event.

On the other hand, if the word “Block” appears in all log events,
it becomes too common to be able to distinguish those log events,
and thus its weight should be reduced. Therefore, we also utilize the
Inverse Document Frequency (IDF) as themetric, where IDF (word) =
log

(
#L

#Lword

)
, #L is total number of all log events and #Lword is

number of log events containing target word. For each word, its
TF-IDF weightw is calculated by TF × IDF .

Finally, we can obtain the semantic vector V ∈ Rd to represent
a specific log event by summing up the word vectors in L with
respect of TF-IDF weights, according to the Eq. 1.

V =
1
N

N∑
i=1

wi ·vi (1)

The semantic vector is able to identify the semantically similar
log events and also distinguish different log events. In this way,
LogRobust is able to handle the instability of log data.

3.3 Attention-based Classification
Through semantic vectorization, each log event E is transformed
into a semantic vectorV . At the same time, each log sequence is ac-
cordingly represented as a list of semantic vectors (like [V1,V2, . . . ,VT]

), we call it as semantic vector sequence. Taking such a semantic
vector sequence as input, LogRobust adopts the Attention-based

Semantic Vector Sequence
[V1,V2, . . . ,Vt , . . . ,VT]

pred = softmax (W ·
∑
αtht)

V1

LSTM

LSTM

h1

FC

α1

h
f
1 hb1

V2

LSTM

LSTM

h2

FC

α2

h
f
2 hb2

Vt

LSTM

LSTM

ht

FC

αt

h
f
t hbt

VT

LSTM

LSTM

hT

FC

αT

h
f
T hbT

Forward

Backward

.

Figure 8: Attention-based Bidirectional Long Short-Term
Memory Neural Network as Anomaly Detection Model

Bi-LSTM neural network for anomaly detection to cope with the
unstable log sequences.

The LSTM model [21], a variant of the Recurrent Neural Net-
work (RNN), is specifically designed for sequential data. It is able
to capture the contextual information of the sequence because it
belongs to a class of artificial neural network where connections
between nodes form a directed graph along a temporal sequence.
This allows it to exhibit temporal dynamic behavior. LSTM con-
sists of an input layer, a hidden neurons layer and an output layer.
Bi-LSTM splits the hidden neurons layer of a standard LSTM into
two directions: the forward pass and the backward pass [21], in
order to capture sufficient information of input log sequences in
both directions. As shown in Figure 8, hft and hbt are hidden state
vectors at time step t in forward pass or backward pass, respectively,
where time step t represents the position of the input log sequence.
We concatenate both hidden states as ht to capture the information
from both directions, i.e. ht = concat

(
h
f
t ,h

b
t

)
.

Since different log events have different impacts on the classifica-
tion result, we introduce the attention mechanism to the Bi-LSTM
model to assign different weights to log events. In this way, the
impact of log data noise can be also reduced, since those noisy log
events tend to have less importance and are more likely to be given
low attention. The importance can be learned automatically from
the attention layer. More specifically, we add a fully connected layer
(i.e., FC layer in Figure 8) as the attention layer to the concatenated
hidden state ht and its output is the weight of attention (denoted as
α), which reflects the importance of a log event. The larger the α is,
the more the model pays attention to this log event. The computa-
tion of α is shown in Eq. 2, whereW a

t is the weight of the attention
layer at time step t .

αt = tanh
(
Wα

t · ht
)

(2)

Finally, we sum all the hidden states with respect to all these
α , and then construct a softmax layer to output the classification
result. As shown in Eq. 3,W is the softmax layer weight and T is

812

Robust Log-Based Anomaly Detection on Unstable Log Data ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

the total length of the log sequence.

pred = softmax

(
W ·

(t=T∑
t=0

αt · ht

))
(3)

During the training phase, we use the prediction outputs and the
ground-truth provided by datasets to calculate the cross-entropy [27]
as the loss function. Through this loss function, we utilize the Sto-
chastic Gradient Descent algorithm [25] to train the parameters of
the model (including the weights of Bi-LSTM and Attention layer).

3.4 Usage of LogRobust
Following the above steps, LogRobust can build a robust model for
anomaly detection on unstable log data. As depicted in Figure 6,
given a set of new log data, we firstly conduct log parsing. After
that, for each log sequence to be detected, LogRobust transforms
each log event in the log sequence into a semantic vector. The log
sequence is represented as a list of semantic vectors accordingly.
Then we feed it into the trained model. Finally, the attention-based
Bi-LSTM can predict whether this sequence is an anomaly or not.

4 EXPERIMENT
In this section, we evaluate our approach by answering the follow-
ing research questions:

RQ1: How effective is the proposed LogRobust approach on
unstable log data?

RQ2: How effective is the attention mechanism in the proposed
LogRobust approach?

RQ3: How effective is the proposed LogRobust approach on
stable log data?

4.1 Experimental Design
4.1.1 Datasets. We evaluate our proposed LogRobust on three
datasets, including the original HDFS dataset, the synthetic unstable
HDFS datasets and the real-world industrial dataset collected from
Microsoft.

HDFS data: The HDFS dataset is a commonly-used benchmark
for log-based anomaly detection [3, 31, 44]. It is produced through
running Hadoop-based map-reduce jobs on more than 200 Ama-
zon’s EC2 nodes, and labelled by Hadoop domain experts. In total,
24,396,061 log messages are generated from 29 log events. These log
messages form different log sequences according to their block_id,
among which about 2.9% indicate system anomalies. More details of
this dataset can be found in [44]. We randomly collect 6,000 normal
log sequences and 6,000 anomalous log sequences from the original
HDFS dataset as the Training set.

The synthetic HDFS data: In order to show the effectiveness
of our approach in dealing with the instability of log data, we have
created unstable testing datasets based on the original HDFS dataset.
We mainly simulate two kinds of log instability as illustrated in
Figure 9. We synthesize the unstable log data according to the
experience we obtained from our empirical study (as described in
Section 2.2). We believe that the synthetic log data can reflect the
unstable characteristics of real-world logs.

• Unstable log events: As described in Section 1 Introduction,
developers often insert/remove some words when they up-
date a logging statement in the source code. Thus, we will

encounter evolving new log events. Furthermore, there are
also many pseudo new log events produced from the inac-
curate log parsing. We create a set of synthetic log events
by randomly inserting/removing a few words into/from the
original log events in advance. The synthetic log events do
not significantly change the semantic meaning of the origi-
nal ones, therefore the corresponding anomaly label status
is not affected. We inject these synthetic log events into the
original log data according to a specific ratio.

• Unstable log sequences: Log sequences are likely to be changed
during the process of log evolution or collection. In order
to simulate the unstable log sequences, we randomly re-
move a few unimportant log events (which do not affect
the corresponding anomaly status labels) from the original
log sequences. We also randomly select an unimportant log
event and repeat it several times in a log sequence, or shuffle
the order of a few events. We inject these synthetic unsta-
ble log sequences into the original log data according to a
specific ratio.

PacketResponder * for block * terminating

Original log event

PacketResponder * for block * terminating time *

Add words to log event

PacketResponder * block * terminatingfor

Remove words from log event

(a) Synthetic log events

Event 1 Event 2 Event 3 Event 4 Event 5

Original log sequence

Event 1 Event 2 Event 3 Event 4 Event 5

Delete events in sequence

Event 1 Event 2 Event 4 Event 5 Event 3

Shuffle events in sequence

Event 1 Event 2 Event 3 Event 3 Event 4 Event 5

Duplicate events in sequence

(b) Synthetic log sequences

Figure 9: Synthetic Log Examples on HDFS Dataset

To prepare for the synthetic dataset, we randomly collect 51,000
log sequences from the original HDFS dataset consisting of 50,000
normal and 1,000 anomaly sequences. The percentage of anomalies
is 2%, which is close to that of the original HDFS dataset. We inject
the unstable log data into it and create two testing sets: NewTesting
1 and 2, which contains injected unstable log events and unstable log
sequences, respectively. Table 1 summaries the synthetic unstable
HDFS datasets.

Table 1: The synthetic HDFS dataset

Set Unstable
event

Unstable
seq. Normal Anomaly Total

Training No No 6,000 6,000 12,000
NewTesting1 Yes No 50,000 1,000 51,000
NewTesting2 No Yes 50,000 1,000 51,000

813

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Xu Zhang et al.

Microsoft’s data: Apart from the public HDFS data, we also
collect the real-world industrial log data from Microsoft, termed as
Service X dataset. Service X is a geographically distributed, web-
based online service serving millions of users. Millions of log se-
quences (about hundreds of terabytes of raw log message data) are
generated online by Service X every day. Service X is a fast-evolving
service which is deployed in a week-level frequency and conducts
many A/B tests for new features in each deployment. Therefore,
the system constantly introduces new execution paths and yields
unprecedented log events.

The Service X dataset consists of logging messages collected on
two days spanning about one month. The number of log messages
in these two sets is 3,178,317 and 5,227,446, respectively. The data
is labelled by the support engineers of Service X and contains a
small percentage of anomalies. Thus it is an imbalanced dataset. For
confidentiality reasons, we do not disclose the number of anomalies
here.

4.1.2 Implementation and Environment. The neural network of
LogRobust is trained using the Stochastic Gradient Descent (SGD)
algorithm [25]. We use a weight decay of 0.0001 with a momentum
of 0.9 and set the initial learning rate to 0.01. We use the cross-
entropy as the loss function. The size of mini-batches is set to 128.
We terminate the training process after 10 epochs. We build our
model based on Keras toolbox [8] using an NVIDIA Tesla M40 GPU.

4.1.3 Evaluation Metrics. To measure the effectiveness of LogRo-
bust in anomaly detection, we use the Precision, Recall and F1-Score
as metrics. We calculate these metrics as follows:

• Precision: the percentage of log sequences that are correctly
identified as anomalies over all the log sequences that are
identified as anomalies by the model: Precision = TP

TP+FP ;
• Recall: the percentage of log sequences that are correctly
identified as anomalies over all abnormal log sequences:
Recall = TP

TP+FN ;
• F1-Score: the harmonic mean of Precision and Recall.

TP is the number of abnormal log sequences that are correctly
detected by the model. FP is the number of normal log sequences
that are wrongly identified as anomalies by the model. FN is the
number of abnormal log sequences that are not detected by the
model.

4.2 RQ1: Experiments on Unstable Log Data
4.2.1 Experiments on the Synthetic HDFS Dataset. We train LogRo-
bust on the original HDFS data, i.e., the Training set in Table 1. Then
we test the trained model on the synthetic dataset with new log
events injected (i.e., the NewTesting1 set). We compare the results
of LogRobust and four traditional approaches, including SVM [29],
LR [3], IM [31] and PCA [44]. As the discussion in Section 2.3, tra-
ditional approaches cannot take new log events as input because
the dimension of log count vectors is related to the fixed number of
original log events. Even if only one new log event appears, these
traditional approaches also fail to work. For the sake of comparison,
we treat all new log events as an extra special dimension in log
count vector as we cannot know the number of new log events in
advance. In this way, the related methods could still work on the
dataset containing unstable log events.

Table 2: Experiment results on synthetic HDFS dataset of un-
stable log events (the NewTesting1 set)

Injection Ratio Metric LR SVM IM PCA LogRobust

5%
Precision 0.25 0.36 0.78 0.90 1.00
Recall 0.92 0.96 0.56 0.66 0.91
F1-Score 0.39 0.53 0.65 0.76 0.95

10%
Precision 0.18 0.11 0.88 0.90 0.89
Recall 0.95 0.89 0.40 0.64 1.00
F1-Score 0.30 0.20 0.56 0.74 0.94

15%
Precision 0.08 0.11 0.84 0.82 0.86
Recall 0.85 0.90 0.41 0.42 0.99
F1-Score 0.14 0.20 0.55 0.55 0.92

20%
Precision 0.06 0.09 0.82 0.82 0.99
Recall 0.87 0.89 0.43 0.41 0.81
F1-Score 0.11 0.16 0.56 0.54 0.89

The experimental results on the NewTesting1 set are shown in
Table 2. It can be seen that LogRobust performs much better than
other approaches. With the increasing injection ratio of unstable
log events, the performance of the related approaches has declined
in different degrees. However, LogRobust still maintains a high
accuracy even under a high injection ratio. For example, LogRobust
can still achieve an F1-Score of 0.89 when the injection ratio is 20%
(when 20% of original log events have been replaced by synthetic
unstable log events). It confirms that our approach is robust enough
to the unstable log events. The reason is that LogRobust is able to
capture the semantic information embedded in log events through
semantic vectorization, so it can identify unstable log events with
similar semantics meaning. Nevertheless, traditional approaches
cannot support previously unseen log events thus they are not able
to achieve satisfying results.

Table 3: Experiment results on synthetic HDFS dataset of un-
stable log sequences (the NewTesting2 set)

Injection Ratio Metric LR SVM IM PCA LogRobust

5%
Precision 0.97 0.94 0.03 0.95 0.99
Recall 0.85 0.98 0.84 0.65 0.93
F1-Score 0.96 0.96 0.06 0.77 0.96

10%
Precision 0.44 0.77 0.03 0.96 0.94
Recall 0.93 0.97 0.97 0.63 0.99
F1-Score 0.61 0.86 0.06 0.76 0.96

15%
Precision 0.09 0.21 0.02 0.83 0.98
Recall 0.88 0.93 0.97 0.39 0.91
F1-Score 0.17 0.33 0.04 0.53 0.94

20%
Precision 0.07 0.07 0.01 0.87 0.92
Recall 0.82 0.86 0.98 0.37 0.97
F1-Score 0.12 0.14 0.03 0.52 0.95

Secondly, we conduct an experiment on the synthetic HDFS
dataset with injected unstable log sequences (the NewTesting2 set).
We train LogRobust on the Training set and use the trained model
to detect anomalies in the NewTesting2 set. The results are shown
in Table 3. LogRobust performs best under all injection ratios. Even
when the injection ratio is 20%, i.e., 20% of log sequences suffer
from missed, duplicated or shuffled problem, we still get a good

814

Robust Log-Based Anomaly Detection on Unstable Log Data ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

F1-Score of 0.95. The reason is that our approach uses attention-
based Bi-LSTM as the classification model. It takes the contextual
information embedded in a log sequence into account and learns
different importance of log events by the means of attention mech-
anism. Therefore, it is robust to small variations in the sequences.
On the contrary, the related approaches rely on the number of oc-
currences of log events. If there are variations in the quantitative
relationship among the log events, the performance of the detection
model will be seriously affected. For example, IM highly depends on
the invariants extracted from log sequences, so it is very sensitive
to changes in sequences.

4.2.2 Experiment on Microsoft’s Industrial Log Dataset. In order to
verify the effectiveness of LogRobust in the real-world industrial
practice, we perform an experiment on Service X dataset, collected
from Microsoft. The Service X dataset consists of logging messages
of two days (with one day in June 2018 and one day in July 2018).
During this time period, the log statements of Service X were
updated weekly. Therefore it suffers from the instability problem.
We use the data collected in June as the training set and the data
collected in July as the testing set.

Table 4 shows the results. LogRobust achieves satisfactory perfor-
mance, with an F1-Score of 0.81. Other approaches achieve F1-Score
ranging from 0.39∼0.52, which are much lower than that of LogRo-
bust. In the real-world scenario, traditional approaches cannot cope
with the unstable log data generated from the evolving system and
processing noise. LogRobust, however, is capable of maintaining
much higher performance, which confirmed its practicality.

Table 4: Results on the Microsoft industrial dataset

Method Precision Recall F1-Score

LR 0.55 0.37 0.44
SVM 0.99 0.26 0.42
IM 0.40 0.39 0.39
PCA 0.43 0.66 0.52
LogRobust 0.69 0.99 0.81

4.3 RQ2: Experiment on Attention Mechanism
In this section, we validate the effectiveness of the attention mech-
anism in LogRobust. We compare the results of standard Bi-LSTM
and attention-based Bi-LSTM on synthetic HDFS dataset with in-
jected unstable log sequences, i.e., the NewTesting2 set. We illustrate
F1-Score in Figure 10.

We can see that, under a low injection ratio, both standard Bi-
LSTM and attention-based Bi-LSTM have the similar performance.
However, as the injection ratio increases, the advantage of attention-
based Bi-LSTM becomes more explicit. For example, under the
injection ratio of 40%, the F1-Score of attention-based Bi-LSTM
is 0.91, which is much better than the F1-Score of 0.35 achieved
by standard Bi-LSTM. The standard Bi-LSTM without attention is
greatly affected by the changes of log sequence because it cannot
learn the importance of different log events, while the performance
of the attention Bi-LSTM remains relatively stable.

4.4 RQ3: Experiments on the Stable Log Data
This RQ evaluates whether or not LogRobust can work effectively
with stable log data. We use the original HDFS dataset as the stable

10% 20% 30% 40%

0.4

0.6

0.8

1

Injection ratio

F1-Score

Bi-LSTM
Attention-based Bi-LSTM

Figure 10: F1-Score of the attention model on synthetic
HDFS dataset of unstable log sequences (theNewTesting2 set)

dataset. TheHDFS dataset is collected from unmodified off-the-shelf
Hadoop systems [44] so there is no evolution of logging statements
in the source code. In addition, all log events of HDFS dataset are
directly identified from the source code [44] thus we can rule out
the influence of the processing noise such as parsing errors. We are
confident that the original HDFS data can be regarded as a stable
log dataset.

We apply LogRobust and related approaches to the original HDFS
dataset. We use the same Training set as shown in Table 1. The
remaining log sequences in the original HDFS dataset are regarded
as the testing set, which contains 562,855 log messages in total,
among which 10,838 indicate anomalous behavior.

The experimental results are shown in Table 5. The recall, preci-
sion and F1-score achieved by LogRobust on this dataset are 1.00,
0.98 and 0.99, respectively. Compared with the two typical unsu-
pervised methods of PCA and IM, LogRobust achieves even better
results. LR and SVM are two classic supervised classifiers. They
achieve similar precision but lower recall compared to our proposed
approach. The results show that LogRobust can work effectively
not only on unstable log datasets but also on the stable ones.

Table 5: Results on the stable HDFS dataset

Method Precision Recall F1-Score

LR 0.99 0.92 0.96
SVM 0.99 0.94 0.96
IM 1.00 0.88 0.94
PCA 0.63 0.96 0.77
LogRobust 0.98 1.00 0.99

5 DISCUSSION
5.1 Incremental Updating
During the system evolution, the number of accumulated new log
events and new log sequences could become larger and larger.
This may cause significant performance degradation if training
the model on a fixed set of historical data. In LogRobust, we can
leverage newly arriving data to maintain the detection performance
of LogRobust. Since retraining a model on new data from scratch is
costly, LogRobust can be incrementally updated to achieve consis-
tently good performance with negligible cost.

Our attention-based Bi-LSTM is trained using a back propagation
algorithm [37] and thus it can naturally be updated incrementally
through the gradient descent method [25] to fine-tune its parame-
ters automatically. This is also one of the advantages of LogRobust

815

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Xu Zhang et al.

over existing approaches [3, 10, 18, 29, 31, 44]. As described in
Section 2.3, the existing approaches are based on the log count
vector whose dimension cannot be changed as it is constrained
by the number of known log events. Thus they cannot support
incremental updating.

We also conduct exploration on the synthetic HDFS dataset un-
der high injection ratio of unstable log events and sequences. The
performance of the model also drops significantly when there are
very large changes in the dataset (F1-Score from 0.92 to 0.48). How-
ever, after incremental updating, the performance of LogRobust
can be greatly improved to 0.90.

5.2 Threats to Validity
We have identified the following threats to validity:

• Subjects: in this work, we only use datasets collected from
HDFS and Service X system. Although HDFS is a typical
open source project and Service X is a large-scale, real-
world software system in Microsoft, the number of subject
systems is still limited. In the future, we will experiment
with LogRobust on a variety of datasets.

• Drastic changes: our approach supports software systems
that are under active maintenance, including the scenarios of
continuous delivery and deployment. However, if there are
sudden, drastic changes to the entire code base or logging
mechanism and LogRobust is not updated incrementally, the
performance of LogRobust would drop significantly.

• Diversity of changes: in real-world systems, there is a wide
variety of changes to log events and log sequences. In our
synthetic data creation, we only consider some common
types occurred in the studied industrial systems. In our future
work, we will explore other possible types of changes.

6 RELATEDWORK
6.1 Log-based Anomaly Detection
Logs are widely used in practice for postmortem analysis. There
have been a lot of studies on log-based anomaly detection[2, 4, 7, 11,
12, 14, 15, 20, 26, 28, 29, 33–35, 38, 41]. The current approaches are
mainly divided into three categories: supervised learning methods,
unsupervised learning methods, and deep learning methods.

Many supervised learning methods are applied to log-based
anomaly detection. For example, [29] trained an SVM classifier
to detect failures using event logs. [7] leveraged the decision tree
model to detect anomalies in application operations. [11] proposed
a regression-based method to detect anomalies using log data in
cloud systems. [3] summarized some classical supervised classi-
fication models that are applied to log-based anomaly detection.
As described in Section II, these conventional approaches are not
robust to unstable log data, which significantly restricts their appli-
cability in real-world practice.

Apart from supervised learning approaches, many unsupervised
learning approaches have been proposed. For example, Lou et
al. [31] proposed Invariant Mining (IM) to mine the invariants
(linear relationships) among log events from log event count vec-
tors. Those log sequences that violate the invariant relationship are
considered as anomalous samples. Xu et al. [44] constructed normal
space and abnormal space of log event count matrix using Principal

Component Analysis to detect anomalies. Lin et al. [30] and He et
al.[20] designed clustering-based methods to identify problems of
online service systems. Unsupervised learning approaches have an
advantage that they do not require manual labels in the training
set. However, as shown in this paper, they are not robust enough
to the instability of log data either.

The recent rise of deep learning methods has given a new solu-
tion for log-based anomaly detection. [46] used LSTM to predict the
anomaly of log sequence based on log keys. [10] also used LSTM
to forecast the next log event and then compare it with the current
ground truth to detect anomalies. [41] trained a stacked-LSTM to
model the operation log samples of normal and anomalous events.
However, their input of neural networks is the one-hot vector of log
events. Thus it cannot cope with evolving log data, especially in the
scenario when new log events appear. Some studies have leveraged
NLP techniques to analyze log data based on the idea that log is
actually a natural language sequence. [46] proposed to use LSTM
model and TF-IDF weight to predict the anomalous log messages.
[1] used word2vec and traditional classifiers, like SVM and Random
Forest, to check whether a log event is an anomaly or not. [5] com-
bined various attention-based models and word vector to detect
anomalous log events. However, these approaches only focused on
the granularity of log events rather than log sequences. They ig-
nored the contextual information in log sequences. In our work, we
take the entire sequence into account and train an attention-based
Bi-LSTM model on the log sequence rather than a single log event.

6.2 Logging Practice and Log Data Quality
Recently, much research has been devoted to the logging practice
and log data quality [13, 16, 17, 45]. For example, Zhu, et al. [13] have
performed an empirical study of logging practice in Microsoft. They
found that developers could adopt different ways of performing
logging and there are no “ground truth” logging methods. Yuan,
et al. [45] reported the characteristics of logging modifications
by investigating the revision histories of open-source software
systems. He, et al. [17] analyzed the quality issues of log parsers.
They observed that many existing log parsers are not sufficiently
accurate or efficient, which make them ineligible for log parsing in
modern systems [17]. Moreover, the predefined parameters required
by the parsers limit the robustness of the online parsers against the
logging statement updates.

7 CONCLUSION
Over the years, many log-based approaches have been proposed to
detect anomalies of large-scale software systems [3, 10, 18, 29, 44].
However, the existing approaches cannot handle the instability of
log data, which comes from the evolution of logging statements and
the processing noise. To overcome this problem, in this paper, we
propose a new log-based anomaly detection approach, called LogRo-
bust. Our approach represents a log event as a fixed-dimension
semantic vector and utilizes an attention-based Bi-LSTM classifica-
tion model to detect anomalies. We have evaluated the proposed
approach using both synthetic public log data and real-world in-
dustrial data from Microsoft. The experimental results confirm the
effectiveness of LogRobust.

816

Robust Log-Based Anomaly Detection on Unstable Log Data ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] Christophe Bertero, Matthieu Roy, Carla Sauvanaud, and Gilles Trédan. 2017.

Experience Report: Log Mining using Natural Language Processing and Applica-
tion to Anomaly Detection. In Software Reliability Engineering (ISSRE), 2017 IEEE
28th International Symposium on. IEEE, 351–360.

[2] Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B Woodard, and Hans
Andersen. 2010. Fingerprinting the datacenter: automated classification of perfor-
mance crises. In Proceedings of the 5th European conference on Computer systems.
ACM, 111–124.

[3] Jakub Breier and Jana Branišová. 2015. Anomaly detection from log files using
data mining techniques. In Information Science and Applications. Springer, 449–
457.

[4] Jakub Breier and Jana Branišová. 2017. A dynamic rule creation based anomaly
detection method for identifying security breaches in log records. Wireless
Personal Communications 94, 3 (2017), 497–511.

[5] Andy Brown, Aaron Tuor, Brian Hutchinson, and Nicole Nichols. 2018. Recurrent
Neural Network Attention Mechanisms for Interpretable System Log Anomaly
Detection. arXiv preprint arXiv:1803.04967 (2018).

[6] Lianping Chen. 2015. Continuous delivery: Huge benefits, but challenges too.
IEEE Software 32, 2 (2015), 50–54.

[7] Mike Chen, Alice X Zheng, Jim Lloyd, Michael I Jordan, and Eric Brewer. 2004.
Failure diagnosis using decision trees. In null. IEEE, 36–43.

[8] François Chollet et al. 2015. Keras. https://keras.io.
[9] Bogdan Dit, Latifa Guerrouj, Denys Poshyvanyk, and Giuliano Antoniol. 2011.

Can Better Identifier Splitting Techniques Help Feature Location. In 2011 IEEE
19th International Conference on Program Comprehension. 11–20.

[10] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 1285–1298.

[11] Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, and John Grundy. 2015.
Experience report: Anomaly detection of cloud application operations using log
and cloud metric correlation analysis. In Software Reliability Engineering (ISSRE),
2015 IEEE 26th International Symposium on. IEEE, 24–34.

[12] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution anomaly
detection in distributed systems through unstructured log analysis. In Data
Mining, 2009. ICDM’09. Ninth IEEE International Conference on. IEEE, 149–158.

[13] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin,
Dongmei Zhang, and Tao Xie. 2014. Where do developers log? an empirical
study on logging practices in industry. In Companion Proceedings of the 36th
International Conference on Software Engineering. ACM, 24–33.

[14] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and
Abdullah Mueen. 2016. LogMine: fast pattern recognition for log analytics. In
Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management. ACM, 1573–1582.

[15] Mehran Hassani, Weiyi Shang, Emad Shihab, and Nikolaos Tsantalis. 2018. Study-
ing and detecting log-related issues. Empirical Software Engineering (2018), 1–33.

[16] Pinjia He, Zhuangbin Chen, Shilin He, and Michael R Lyu. 2018. Characterizing
the Natural Language Descriptions in Software Logging Statements. (2018).

[17] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu. 2016. An Evaluation Study on Log
Parsing and Its Use in Log Mining. In 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 654–661. https://doi.org/
10.1109/DSN.2016.66

[18] Pinjia He, Jieming Zhu, Shilin He, Jian Li, and Michael R Lyu. 2017. Towards
Automated Log Parsing for Large-Scale Log Data Analysis. IEEE Transactions on
Dependable and Secure Computing (2017).

[19] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain: An online
log parsing approach with fixed depth tree. In 2017 IEEE International Conference
on Web Services (ICWS). IEEE, 33–40.

[20] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R. Lyu, and
Dongmei Zhang. 2018. Identifying Impactful Service System Problems via Log
Analysis. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2018). ACM, 60–70. https://doi.org/10.1145/3236024.3236083

[21] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF models for
sequence tagging. arXiv preprint arXiv:1508.01991 (2015).

[22] Jez Humble and David Farley. 2010. Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson Education.

[23] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou,
and Tomas Mikolov. 2016. FastText.zip: Compressing text classification models.
arXiv preprint arXiv:1612.03651 (2016).

[24] Suhas Kabinna, Cor-Paul Bezemer, Weiyi Shang, Mark D. Syer, and Ahmed E.
Hassan. 2018. Examining the stability of logging statements. Empirical Software
Engineering 23, 1 (01 Feb 2018), 290–333. https://doi.org/10.1007/s10664-017-
9518-0

[25] Jack Kiefer, JacobWolfowitz, et al. 1952. Stochastic estimation of the maximum of
a regression function. The Annals of Mathematical Statistics 23, 3 (1952), 462–466.

[26] Christopher Kruegel and Giovanni Vigna. 2003. Anomaly detection of web-based
attacks. In Proceedings of the 10th ACM conference on Computer and communica-
tions security. ACM, 251–261.

[27] Yann Lecun, Yoshua Bengio, and Geoffrey E Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436–444.

[28] Tao Li, Yexi Jiang, Chunqiu Zeng, Bin Xia, Zheng Liu, Wubai Zhou, Xiaolong
Zhu, Wentao Wang, Liang Zhang, Jun Wu, et al. 2017. FLAP: An end-to-end
event log analysis platform for system management. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 1547–1556.

[29] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo. 2007. Failure
prediction in ibm bluegene/l event logs. In Data Mining, 2007. ICDM 2007. Seventh
IEEE International Conference on. IEEE, 583–588.

[30] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. 2016.
Log clustering based problem identification for online service systems. In Pro-
ceedings of the 38th International Conference on Software Engineering Companion.
ACM, 102–111.

[31] Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li. 2010. Mining
Invariants from Console Logs for System Problem Detection.. In USENIX Annual
Technical Conference. 23–25.

[32] Adetokunbo Makanju, A Nur Zincir-Heywood, and Evangelos E Milios. 2012. A
lightweight algorithm for message type extraction in system application logs.
IEEE Transactions on Knowledge and Data Engineering 24, 11 (2012), 1921–1936.

[33] Leonardo Mariani and Fabrizio Pastore. 2008. Automated identification of failure
causes in system logs. In Software Reliability Engineering, 2008. ISSRE 2008. 19th
International Symposium on. IEEE, 117–126.

[34] Karthik Nagaraj, Charles Killian, and Jennifer Neville. 2012. Structured compara-
tive analysis of systems logs to diagnose performance problems. In Proceedings
of the 9th USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 26–26.

[35] Alina Oprea, Zhou Li, Ting-Fang Yen, Sang H Chin, and Sumayah Alrwais. 2015.
Detection of early-stage enterprise infection by mining large-scale log data. In
Dependable Systems and Networks (DSN), 2015 45th Annual IEEE/IFIP International
Conference on. IEEE, 45–56.

[36] Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in
automatic text retrieval. Information processing & management 24, 5 (1988),
513–523.

[37] Robert J Schalkoff. 1997. Artificial neural networks. Vol. 1. McGraw-Hill New
York.

[38] Jiaqi Tan, Xinghao Pan, Soila Kavulya, Rajeev Gandhi, and Priya Narasimhan.
2008. SALSA: Analyzing Logs as StAte Machines. WASL 8 (2008), 6–6.

[39] Liang Tang, Tao Li, and Chang-Shing Perng. 2011. LogSig: Generating sys-
tem events from raw textual logs. In Proceedings of the 20th ACM international
conference on Information and knowledge management. ACM, 785–794.

[40] Risto Vaarandi. 2003. A data clustering algorithm for mining patterns from event
logs. In IP Operations & Management, 2003.(IPOM 2003). 3rd IEEE Workshop on.
IEEE, 119–126.

[41] R Vinayakumar, KP Soman, and Prabaharan Poornachandran. 2017. Long short-
term memory based operation log anomaly detection. In Advances in Computing,
Communications and Informatics (ICACCI), 2017 International Conference on. IEEE,
236–242.

[42] Wei Xu. 2010. System problem detection by mining console logs. Ph.D. Dissertation.
UC Berkeley.

[43] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. 2009.
Largescale system problem detection by mining console logs. Proceedings of
SOSPâĂŹ09 (2009).

[44] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. 2009.
Detecting large-scale system problems by mining console logs. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. ACM, 117–132.

[45] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. 2012. Characterising Logging Prac-
tices in Open-Source Software. In Proceedings of the 34th International Conference
on Software Engineering (ICSE’12).

[46] Ke Zhang, Jianwu Xu, Martin Renqiang Min, Guofei Jiang, Konstantinos Pelechri-
nis, and Hui Zhang. 2016. Automated IT system failure prediction: A deep
learning approach.. In BigData. 1291–1300.

[47] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R. Lyu, and Dong-
mei Zhang. 2015. Learning to Log: Helping Developers Make Informed Log-
ging Decisions. In Proceedings of the 37th International Conference on Software
Engineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 415–425.
http://dl.acm.org/citation.cfm?id=2818754.2818807

[48] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, andMichael R
Lyu. 2018. Tools and Benchmarks for Automated Log Parsing. arXiv preprint
arXiv:1811.03509 (2018).

817

https://keras.io
https://doi.org/10.1109/DSN.2016.66
https://doi.org/10.1109/DSN.2016.66
https://doi.org/10.1145/3236024.3236083
https://doi.org/10.1007/s10664-017-9518-0
https://doi.org/10.1007/s10664-017-9518-0
http://dl.acm.org/citation.cfm?id=2818754.2818807

	Abstract
	1 Introduction
	2 Background and Empirical Study
	2.1 Log Terminology
	2.2 An Empirical Study on Log Instability
	2.3 Limitation of Existing Methods

	3 LogRobust: An Approach to Robust Log-based Anomaly Detection
	3.1 Log Parsing
	3.2 Semantic Vectorization
	3.3 Attention-based Classification
	3.4 Usage of LogRobust

	4 Experiment
	4.1 Experimental Design
	4.2 RQ1: Experiments on Unstable Log Data
	4.3 RQ2: Experiment on Attention Mechanism
	4.4 RQ3: Experiments on the Stable Log Data

	5 Discussion
	5.1 Incremental Updating
	5.2 Threats to Validity

	6 Related Work
	6.1 Log-based Anomaly Detection
	6.2 Logging Practice and Log Data Quality

	7 Conclusion
	References

