
On the Multiple Sources and Privacy
Preservation Issues for Heterogeneous

Defect Prediction
Zhiqiang Li , Xiao-Yuan Jing , Xiaoke Zhu , Hongyu Zhang , Baowen Xu , and Shi Ying

Abstract—Heterogeneous defect prediction (HDP) refers to predicting defect-proneness of software modules in a target project using

heterogeneous metric data from other projects. Existing HDP methods mainly focus on predicting target instances with single source.

In practice, there exist plenty of external projects. Multiple sources can generally provide more information than a single project.

Therefore, it is meaningful to investigate whether the HDP performance can be improved by employing multiple sources. However, a

precondition of conducting HDP is that the external sources are available. Due to privacy concerns, most companies are not willing to

share their data. To facilitate data sharing, it is essential to study how to protect the privacy of data owners before they release their

data. In this paper, we study the above two issues in HDP. Specifically, to utilize multiple sources effectively, we propose a multi-source

selection based manifold discriminant alignment (MSMDA) approach. To protect the privacy of data owners, a sparse representation

based double obfuscation algorithm is designed and applied to HDP. Through a case study of 28 projects, our results show that

MSMDA can achieve better performance than a range of baseline methods. The improvement is 3.4-15:3 percent in g-measure and

3.0-19:1 percent in AUC.

Index Terms—Heterogeneous defect prediction, multiple sources, privacy preservation, utility, source selection, manifold

discriminant alignment

Ç

1 INTRODUCTION

SOFTWARE defect prediction (SDP) is one of themost popu-
lar research topics in software engineering. SDP aims to

predict defect-prone software modules (instances) before the
defects are discovered, therefore it can be used to better pri-
oritize software quality assurance efforts [1], [2], [3], [4], [5],
[6]. In recent years, many machine learning based meth-
ods [7], [8], [9], [10], [11], [12], [13], [14] and various software
metrics [15], [16], [17], [18], [19], [20], [21] have been pre-
sented and applied to SDP. For example, Kim et al. [8] used a
machine learning classifier for predicting latent software
bugs. Jing et al. [10] introduced dictionary learning technique

into defect prediction. Recently, Lee et al. [22] presented
the micro interaction metrics, which leverage developer
interaction information for SDP. Existing defect prediction
methods can be mainly divided into two categories accord-
ing to their application scenario: within-project defect pre-
diction (WPDP) and cross-project defect prediction (CPDP).
WPDP focuses on predicting defects of new software instan-
ces in the same project by building defect predictor using
sufficient historical defect data [23], [24], [25], [26], [27]. How-
ever, in practice, such kind of historical datamay be very lim-
ited for some projects [28], [29], [30], [31], which hinders the
application ofWPDP.

CPDP refers to building defect prediction models for soft-
ware modules in a target project using historical data col-
lected from other existing projects (i.e., source projects) [28],
[29], [30]. In recent years, several CPDP methods have been
developed. It has been found that defect predictors built from
cross-project data can be just as effective as those built from
within-project data [32], [33], [34], [35], [36], [37], [38]. Existing
CPDPmethods require that the instances of source and target
projects have the same metrics (i.e., the metric sets should be
identical between projects). However, in many cases, there
could be very few common metrics between source and tar-
get projects, and it is challenging to find a source project that
has the common metric sets as the target project’s. For exam-
ple, there are 37 metrics in many NASA datasets [39], and 61
metrics in AEEEM datasets [40]. However, there exists only
one common metric between NASA and AEEEM datasets,
which is Line of Code (LOC) metric. In this case, the existing
CPDP methods cannot obtain satisfactory prediction results,

� Z. Li, B. Xu, and S. Ying are with the State Key Laboratory of Software
Engineering, School of Computer, Wuhan University, Wuhan 430072,
China. E-mail: lzq115@163.com, bwxu@nju.edu.cn, yingshi@whu.edu.cn.

� X.-Y. Jing is with the the State Key Laboratory of Software Engineering,
School of Computer, Wuhan University, Wuhan 430072, China and with
the College of Automation, Nanjing University of Posts and Telecommuni-
cations, Nanjing 210023, China. E-mail: jingxy_2000@126.com.

� X. Zhu is with the School of Computer and Information Engineering,
Henan University, Kaifeng 475001, China and with the State Key Labora-
tory of Software Engineering, School of Computer, Wuhan University,
Wuhan 430072, China. E-mail: whuzxk@whu.edu.cn.

� H. Zhang is with the School of Electrical Engineering and Computing,
University of Newcastle, Callaghan, NSW 2308, Australia.
E-mail: hongyu.zhang@newcastle.edu.au.

Manuscript received 28 Feb. 2017; revised 18 Sept. 2017; accepted 20 Nov.
2017. Date of publication 5 Dec. 2017; date of current version 24 Apr. 2019.
(Corresponding author: Xiao-Yuan Jing.)
Recommended for acceptance by A. E. Hassan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2017.2780222

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 4, APRIL 2019 391

0098-5589� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5999-3658
https://orcid.org/0000-0001-5999-3658
https://orcid.org/0000-0001-5999-3658
https://orcid.org/0000-0001-5999-3658
https://orcid.org/0000-0001-5999-3658
https://orcid.org/0000-0002-0392-8475
https://orcid.org/0000-0002-0392-8475
https://orcid.org/0000-0002-0392-8475
https://orcid.org/0000-0002-0392-8475
https://orcid.org/0000-0002-0392-8475
https://orcid.org/0000-0002-0664-1832
https://orcid.org/0000-0002-0664-1832
https://orcid.org/0000-0002-0664-1832
https://orcid.org/0000-0002-0664-1832
https://orcid.org/0000-0002-0664-1832
https://orcid.org/0000-0002-3063-9425
https://orcid.org/0000-0002-3063-9425
https://orcid.org/0000-0002-3063-9425
https://orcid.org/0000-0002-3063-9425
https://orcid.org/0000-0002-3063-9425
https://orcid.org/0000-0001-7743-1296
https://orcid.org/0000-0001-7743-1296
https://orcid.org/0000-0001-7743-1296
https://orcid.org/0000-0001-7743-1296
https://orcid.org/0000-0001-7743-1296
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

because some informative metrics necessary for building a
good prediction model may not exist in the common metrics
across projects [41], [42].

Recently, heterogeneous defect prediction (HDP) mod-
els [41], [42], [43], [44] are proposed to predict defects across
projects with heterogeneous metric sets (i.e., source and tar-
get projects have different metric sets). For example, Jing
et al. [41] presented a transfer CCA+method by utilizing uni-
fied metric representation and CCA-based transfer learning
technique for HDP. Nam and Kim [42] employed metric
selection and metric matching techniques to predict defects
across projects with heterogeneous metric sets. These meth-
ods have achieved encouraging prediction results.

In this paper, we address issues associated with HDP. To
clarify some specific terms used in the paper, we provide
the description of terminologies in Table 1.

1.1 Motivation

Although existing heterogeneous defect prediction meth-
ods [41], [42], [43], [44] have achieved promising results, we
have identified the following two issues:

(1) The Multiple Sources Issue. Existing HDP methods
mainly focus on predicting software instances in a target
project based on metric data collected from a single project.
In practice, there exist plenty of external projects from other
companies. Multiple source projects can generally provide
more information than a single project. Intuitively, predict-
ing software instances in a target project with multiple sour-
ces may bring better performance. However, since the
heterogeneity exists not only between the source and target
but also among multiple sources, it is challenging to learn a
high-quality defect prediction model from multiple hetero-
geneous sources. Therefore, it is meaningful to investigate
whether and how the performance of HDP can be improved
by employing the multiple source projects.

(2) The Privacy Preservation Issue. A precondition to con-
duct HDP learning experiments with multiple source proj-
ects is that these projects can be obtained from other
companies. In practice, due to the privacy concerns, most
companies are not willing to share their data. In particular,
some sensitive attributes (e.g., Line of Code) could exist in
software defect data, from which some business-sensitive

information can be inferred. For example, with Line of
Code, the effort of developing corresponding project can be
roughly estimated. To facilitate data sharing, it is essential
to protect the privacy of data owners before they release
their data. However, existing HDP methods do not consider
the privacy preservation issue.

1.2 Contribution

In this paper, we aim to investigate the feasibility of using
multiple source projects for HDP and provide an effective
privacy preservation algorithm for data owners. The main
contributions of our work can be summarized as follows:

(1) We propose a multi-source heterogeneous defect
prediction approach in Section 3.2.2, named multi-
source selection based manifold discriminant align-
ment (MSMDA). MSMDA can incrementally select
distribution-similar source projects from many avail-
able sources for a given target project. By fully
exploiting the label information of multiple sources
and a limited amount of training target data,MSMDA
can transform the target project and the well-selected
multiple sources into a discriminative common sub-
space, where the target and sources have similar data
distributions and favorable classification ability.

(2) We design a privacy preservation algorithm in
Section 3.1.2, named sparse representation based
double obfuscation (SRDO). With SRDO, the privacy
of original data can be protected effectively, and the
data utility can be well maintained at the same time.

(3) We conduct extensive and large-scale experiments on
28 public projects from five groups including NASA,
SOFTLAB, ReLink, AEEEMand PROMISE to evaluate
our proposed approach. Experimental results demon-
strate that the proposed multi-source heterogeneous
defect prediction approach can obtain better HDP pre-
diction performance than several state-of-the-art
methods, and the designed privacy preservation algo-
rithm can provide better privacy and higher utility.

1.3 Research Questions

In this paper, we mainly address the following two research
questions:

� RQ1: How to design a privacy preservation algo-
rithm that can provide favorable privacy and utility
for the privacy needs of HDP?

� RQ2: How effective is using multiple heterogeneous
source projects to improve the HDP prediction
performance?

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 describes the research
methodology. The experimental setups are given in Section 4
and the corresponding experimental results are reported in
Section 5. In Section 6, we provide a discussion about the
proposed approach and some threats to validity. The con-
clusions are drawn in Section 7.

2 RELATED WORK

In this section, we briefly review cross-project defect predic-
tionmethods, heterogeneous defect predictionmethods, and
privacy-preservingmethods in software defect prediction.

TABLE 1
Terminologies Used in the Paper

Terminology Description

SDP software defect prediction
WPDP within-project defect prediction
CPDP cross-project defect prediction
HDP heterogeneous defect prediction (CPDP using

different metric sets)
Single source a single project which provides metric data for

training
Multiple sources multiple projects which provide heterogeneous

metric data for training
Source data software instances (modules) in a source project
Target data software instances (modules) in a target project
Training target
data

the limited amount of labeled software instance
(modules) from a target project

Test target data the to-be-predicted software instances (modules)
from a target project

392 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 4, APRIL 2019

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

2.1 CPDP Methods with Common Metric Sets

Cross-project defect prediction refers to predicting defect-
proneness of a software instance in a target project by using
prediction model trained from historical data of other source
projects [28], [29], [30]. In recent years, we have witnessed
a lot of interest in developing new CPDP methods. Most
of existing CPDP methods focus on designing effective
machine learning algorithmswith strong generalization abil-
ity for building the defect predictors [45], [46], [47]. For
example, Ma et al. [32] presented a CPDP method named
transfer Naive Bayes, which adapts naive Bayeswithweight-
ing training data. Nam et al. [34] applied transfer component
analysis (TCA) to CPDP, which is a feature-based transfer
learning method. Moreover, they extended TCA to TCA+ by
using the normalization techniques to preprocess data,
which exhibits good performance for defect prediction.
Recently, Chen et al. [36] presented a double transfer boost-
ing method for CPDP. Canfora et al. [48] developed a multi-
objective genetic algorithm for CPDP to train a logistic
regression model, which adopts the cost-effectiveness multi-
objective predictor. Ryu et al. [37] investigated the applicabil-
ity of the class imbalance learning under CPDP setting and
designed a boosting based model named value-cognitive
boosting with support vector machine. Jing et al. [49]
provided an improved subclass discriminant analysis
based defect prediction framework for both within-project
and cross-project class-imbalance learning problems. Xia
et al. [38] presented a HYbrid moDel Reconstruction
Approach (HYDRA) for CPDP, which includes two phases:
genetic algorithm phase and ensemble learning phase. These
two phases create a massive composition of classifiers. To
bridge the gap between programs’ semantic information and
defect prediction features, Wang et al. [50] applied a power-
ful deep learning algorithm to learn semantic representation
of programs automatically from the source code for both
WPDP and CPDP. From the perspective of clustering, Zhang
et al. [51] presented to apply a connectivity-based unsuper-
vised classifier for cross-project prediction that is based on
spectral clustering (SC).

Different from the methods that focus on designing effec-
tive machine learning algorithms, some CPDP methods aim
to find the best suitable training data for the instances in a
target [33], [52], [53]. Zimmermann et al. [28] performed 622
cross-project predictions and showed that careful selection
of training data and the characteristics of data and process
play important roles in successful CPDP. Turhan et al. [29]
presented a nearest-neighbor filter (NN-filter) method to
select training data from other projects for within-project
data based on distribution similarity. Later, they introduced
a mixed model [35] for CPDP, which uses both the within-
project and cross-project data as filter (NN-filter) method to
select training data. He et al. [30] investigated CPDP based
on training data selection by carrying out three experiments
using 34 data sets. They showed that the prediction results
were related to the distributional attributes of datasets,
which is useful for training data selection.

Additionally, there are some other CPDP methods [54],
[55]. Based on the different evaluation measures, Rahman
et al. [56] introduced the measure called area under the cost
effectiveness curve (AUCEC) to investigate the feasibility of
CPDP and drew an optimistic conclusion that CPDP is no

worse than within-project prediction in terms of AUCEC.
Predicting the code changes are likely to introduce defects,
which is referred to change-level defect prediction. Based
on this context, Kamei et al. [57] empirically evaluated the
performance of Just-In-Time (JIT) cross-projects models.
Zhang et al. [58] designed a universal defect prediction
model to predict an individual project, which is built from
an entire set including the target project and other projects.

Existing CPDP methods learn the prediction model by
using the commonmetrics contained in the source and target
projects. In practice, the size of common metric set across
source and target projects may be very small. In this case,
thesemethods cannot obtain desirable prediction results.

2.2 HDP Methods

Recently, a few HDP methods have been presented [41],
[42], [43], [44]. Since the metrics except common metrics
might have favorable discriminant ability, Jing et al. [41]
presented a HDP method, namely CCA+, which utilizes
unified metric representation (UMR) and CCA-based trans-
fer learning technique. Specifically, the UMR consists of
three types of metrics, including the common metrics of the
source and target projects, source-project-specific metrics,
and target-project-specific metrics. By learning a pair of pro-
jective transformations under which the correlation of the
source and target project is maximized, CCA+ can make the
data distribution of target be similar to that of source.
Experiments on public projects indicate that CCA+ can
achieve good prediction results.

At the same time, Nam and Kim [42] presented another
solution for HDP. They first employed the metric selection
technique to remove redundant and irrelevant metrics for
source project. Then, they matched up (e.g., Kolmogorov-
Smirnov test based matching, KSAnalyzer) the metrics of
source and target projects based on metric similarity such as
distribution or correlation. After these processes, they
finally arrived at a matched source and target metric sets.
With the obtained metric sets, they built HDP model to pre-
dict labels of the instances in a target. They found that about
68 percent of HDP predictions outperform or are compara-
ble to WPDP predictions with statistical significance.

Additionally, He et al. [43] presented CPDP-IFS to
address the problem of heterogeneous metric sets (Imbal-
anced Feature Sets) in CPDP. They used distribution charac-
teristics vectors [30] of each instance as newmetrics to enable
defect prediction. Recently, Cheng et al. [44] presented a
cost-sensitive correlation transfer support vector machine
(CCT-SVM) method to deal with the class imbalance prob-
lem in CPDP based on CCA+ [41]. They take different mis-
classification costs into consideration to incorporate the SVM
classifier for defective and non-defective classes.

Existing HDP methods [41], [42], [43], [44] only use a sin-
gle source project to predict target project, yet they did not
investigate the feasibility of using multiple source projects to
conduct defect prediction. In addition, they did not consider
the privacy-preserving problem for the purpose of HDP.

2.3 Privacy-Preserving Methods in Software Defect
Prediction

Privacy preservation issue has been investigated in many
software engineering applications, e.g., software defect

LI ET AL.: ON THE MULTIPLE SOURCES AND PRIVACY PRESERVATION ISSUES FOR HETEROGENEOUS DEFECT PREDICTION 393

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

prediction [59], [60], [61], software testing and debug-
ging [62], [63], [64], [65], [66], software effort estimation [67],
and so on. In this section, we briefly review the most related
privacy works in software defect prediction.

Peters and Menzies [59] presented a privacy algorithm
MORPH, which is a data transformation method via pertur-
bation to create synthetic data.WithMORPH, the defect data
set owners can privatize their data prior to release. However,
the authors found that, sometimes, the MORPHed data
exhibited worse performance than the original data. Subse-
quently, they presented the CLIFF+MORPH (or LACE11)
algorithm [60], which combines CLIFF and MORPH. CLIFF
gets rid of irrelevant instances thereby increasing the distan-
ces between the remaining instances, and MORPH is able to
move the remaining instances further and create new syn-
thetic instances that do not cross class boundaries. To solve
the privacy preservation problem in multi-party scenario,2

LACE2 [61] is presented. LACE2 combines CLIFF,
LeaF [68] and MORPH algorithms together, where LeaF is
an online and incremental clustering technique. With
LeaF, data owner incrementally add data to a private
cache and contribute “interesting” data that are not similar
to the current content of the private cache. However,
LACE2 [61] is based on the assumptions that each data

owner must provide data with the same metrics for pool-
ing into a private cache. So LACE2 was only suitable for
CPDP with the same metric sets.

3 RESEARCH METHODOLOGY

In this section, we first introduce the designed privacy-pre-
serving algorithm, and then describe the proposed multi-
source heterogeneous defect prediction approach. Fig. 1 illus-
trates the overall architecture of our research method. More
technical details will be introduced in the following sections.

3.1 The Proposed Privacy Preservation Algorithm

The privacy and utility are two important aspects that need
to be considered when designing a privacy-preserving data
sharing algorithm. Here, we first review related techniques
CLIFF and MORPH, and then propose a new privacy-
preserving algorithm, i.e., sparse representation based dou-
ble obfuscation.

3.1.1 CLIFF and MORPH

CLIFF [60] is an instance selector that return a subset of rele-
vant instances and deletes irrelevant instances. It assumes
that tables of training data can be divided into classes, differ-
ent rows might be labeled accordingly defective or defect-
free. The procedure of CLIFF is formally stated as follows:

(1) For each column of data, find the power of each attri-
bute subrange; i.e., how frequently that subrange
appears in one class more than any other. Comput-
ing the power of a subrange is based on equal fre-
quency binning (EFB) with 10 bins to each attribute
in the dataset.

(2) Finding the product of the powers for each row.
(3) Remove the less powerful rows of each class, keep-

ing the most powerful rows. For example, selecting
40 percent of the top ranked rows.

The result is a reduced dataset with fewer rows. In the-
ory, this reduced dataset is less susceptible to privacy
breaches.

MORPH [60] is an instance mutator. It changes the
numeric attribute values of each row by replacing these
original values with MORPHed values. Let x 2 data be the
original instance to be changed, y the resulting MORPHed
instance, and z 2 data the nearest unlike neighbor (NUN) of x.
NUN is the nearest neighbor of x whose class label is differ-
ent from x0s class label (i.e., between-class instance) and its
distance is calculated by using the euclidean distance. Base
on the above description, the MORPHed instances are cre-
ated by applying following Equation to each attribute value
of the instance

y ¼ x� ðx� zÞ � r; (1)

where r is a random number to control the obfuscation
degree for x. A small r value means the boundary is closer
to the original instance, while a large r value means the
boundary is farther away from the original instance. The
value of random number r ranges 0.15 and 0.35. In [60]
and [61], this range of values produced privatized data can-
didates with high privacy and accurate defect prediction.
More details about CLIFF and MORPH can be found in [60].

Fig. 1. Overall architecture of our approach for HDP. The multiple het-
erogeneous source projects from other companies are first privatized.
Then, a multi-source selection based manifold discriminant alignment
approach is used to build HDP model. Finally, based on the trained HDP
model, the test data in the target can be predicted.

1. large-scale assurance confidentiality environment.
2. The multi-party scenario means the multiple data owners priva-

tized their data together.

394 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 4, APRIL 2019

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

3.1.2 Sparse Representation Based Double

Obfuscation

For the original instance x, MORPHonly employed theNUN
from between-class instances to obfuscate the data. Although
the MORPHed value can ensure the privatized dataset pri-
vate enough, it does not always guarantee that an instance
doesn’t move across the boundary between the original
instance and instances of another class, which means that it
may be difficult to keep the MORPHed value close enough
to the original to maintain the utility of the dataset. Intui-
tively, for x, if the between-class and within-class instances
are used simultaneously for obfuscation, it’s more likely that
the privatized value will not move across the boundary
between the original instance and instances of another class,
i.e., the data distribution can be better maintained.

As described in Section 3.1.1,MORPH adopted the euclid-
ean distance based neighbor selector to select the NUN
instances. However, oneweakness of the basic euclidean dis-
tance selector is that if one of the input attributes has a rela-
tively large range, then it can overpower the other attributes,
leading to that the “true” NUN instance may be missed [69].
That is, the euclidean distance is sensitive to the noise data,
while the software defect data usually contains noise [39],
[70], [71] in practice. Hence, we should design a nearest
neighbor selector to select the “true” neighbor instances.

Sparse representation, a recently developed technique,
arouses much interest from researchers due to its effective-
ness and robustness [72]. The idea of sparse representation is
that an instance can be efficiently represented or coded by a
sparse linear combination of a few base instances called dic-
tionary atoms [72]. It has powerful representation ability and
owns robustness to noise data. Given an instance b 2 Rd, its
sparse representation can be seen as finding a coefficient vec-
tor h by solving the following optimization problem:

min
h�0

b�Bhk k22þm hk k1; (2)

where B 2 Rd�n denotes the dictionary atoms, which usu-
ally are constructed by using the training instances. m is a
small parameter which controls the sparsity of the solution.

The coefficient vector h is sparse and only has a few nonzero
values, where the instance corresponding to the maximal
nonzero value is most similar to b. The l1 ls technique3 can
effectively solve the above optimization problem [73]. Based
on this, we can employ the sparse representation technique
to select the nearest neighbor.

Therefore, to maintain the distribution of privatized data
more effectively, we propose a sparse representation based
double obfuscation algorithm for HDP. SRDO first selects
the NUN from the between-class instances and the nearest
similar neighbor (NSN) from the within-class instances with
sparse representation technique, and then uses both the
selected NUN and NSN as disturbances. With SRDO, the
distribution of original data can bewell kept in the privatized
data, such that the utility of data can be better maintained.
Here, NSN is the nearest neighbor of x in the same class.
Fig. 2 illustrates the steps involved in the MORPH and
SRDO algorithms. In the figure, we give an example to show
the difference between MORPH and SRDO. For MORPH, it
only selects the NUN (the red triangle in Fig. 2b) from the
between-class instances and uses the euclidean distance to
find the nearest neighbors. For SRDO, it simultaneously
selects the NUN (the green triangle in Fig. 2c) from the
between-class instances and NSN (the blue circle in Fig. 2c)
from the within-class instances as well as uses the sparse
representation coefficient to find the nearest neighbors. The
yellow circles in Figs. 2b and 2c separately denote the possi-
ble obfuscated instances ofMORPH and SRDO.

Algorithm 1. The SRDO Algorithm

Input: The original projects fS1; S2; . . . ; SKg;
Output: The privatized projects fS1; S2; . . . ; SKg.
1: Each data owner separately uses CLIFF to select the subset of

their data that best represents the target classes, here, keep-
ing 40 percent of the original data [60]. Only the data
selected by CLIFF are used in SRDO;

2: The CLIFFed data are then obfuscated with SRDO by using
Eq. (3);

3: The privatized data after SRDO can be added to a public
data repository for sharing.

The detailed obfuscating steps of SRDO are as follows.
The CLIFF technique is used to select informative instances
that best predict for the target class and remove uninforma-
tive instances. Then, for each CLIFFed instance x, we sepa-
rately select a NSN zw from the within-class instances and a
NUN zb from the between-class instances by using sparse
representation based the nearest neighbor selector.More spe-
cifically, to select the NSN zw, we treat the x as a sparse linear
combination of all the within-class instances (except for the x
itself) by using Eq. (2), and then select the within-class
instance corresponding to the maximal coefficient value as
zw. Similarly, NUN zb is selected by treating x as a sparse lin-
ear combination of all the between-class instances by using
Eq. (2). The original instance can be obfuscated as follows:

y ¼ xþ ðx� zwÞ � r1 � signðr1Þðx� zbÞ � jr2j; (3)

where y is the resulting SRDOed instance, r1 and r2 are the
random numbers to control the obfuscation degree for x,

Fig. 2. Illustration of the MORPH and SRDO algorithms. The black circle
represents the original defective instance x to be changed, the yellow
circle represents the resulting obfuscated instance, the red triangle
denotes the selected NUN (i.e., defect-free instance, number 7) of
MORPH, the green triangle (i.e., defect-free instance, number 9) and
the blue circle separately denote the selected NUN and NSN of SRDO.

3. https://web.stanford.edu/�boyd/l1_ls/

LI ET AL.: ON THE MULTIPLE SOURCES AND PRIVACY PRESERVATION ISSUES FOR HETEROGENEOUS DEFECT PREDICTION 395

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

https://web.stanford.edu/~boyd/l1_ls/
https://web.stanford.edu/~boyd/l1_ls/

signð	Þ is the signum function, 1 if the corresponding value
is greater than zero, �1 if the corresponding value is less
than zero, and 0 otherwise, j 	 j is the absolute value func-
tion. Experimental results in [60] and [61] have shown that
the random number r can produce privatized data candi-
dates with high privacy and accurate defect prediction in
the range of 0:15 to 0:35. Therefore, we use this range of val-
ues as our experimental parameters for the random num-
bers r1 and r2 in Eq. (3). In future work, we will investigate
the optimal values for these experimental parameters. The
detailed procedure of SRDO is summarized in Algorithm 1.

3.2 Multi-Source Heterogeneous Defect Prediction

To sufficiently use multiple source projects from other com-
panies, we propose a multi-source heterogeneous defect
prediction approach for HDP, namely, multi-source selec-
tion based manifold discriminant alignment.

3.2.1 Heterogeneous Domain Adaptation for HDP

In HDP, the main challenge is how to overcome the differ-
ence in data distributions between source and target proj-
ects when learning a generalized model [41], [42]. In fact,
HDP can be viewed as a specific case of transfer learning,
which aims to transfer the knowledge learned from a source
project to a target project. Heterogeneous domain adapta-
tion [74] is an advanced transfer learning technique [75],
[76]. It aims to handle different distributions between het-
erogeneous source and target domains, and builds a classi-
fier using the data in source domain that will perform well
in target domain. Recently, manifold alignment (MA) based
heterogeneous domain adaptation methods have achieved
good results in several fields, such as text categorization [77]
and remote sensing image classification [78].

In this paper, we intend to introduce the MA technique
into HDP. However, there exist some shortcomings in
existing MA methods. (1) They do not take the source
selection problem into consideration such that they may
fail to identify the right sources to use for adaptation. A
key problem of transferring defect prediction knowledge
from one project to another is the differences between
training data and test data. Intuitively, the target project
should learn from source projects with similar properties,
or learn from training data with similar distributions.
Since the multiple source projects are usually collected
from different development environments or application
fields, it is possible that there exist large data distribution
differences among these source projects and a target proj-
ect. Considering that the data distribution differences may
bring adverse influence to the follow-up prediction, it is
important to choose proper source projects for a given tar-
get project. As mentioned above, an intuitive idea for het-
erogeneous cross-project defect prediction is to select
proper source projects that are similar to the target project.
(2) Existing MA methods cannot guarantee that the dis-
crepancy between unlabeled instances in the target project
and source projects is reduced effectively. Exploiting unla-
beled instances in the target project during adaptation
may be beneficial for domain adaptation [74]. Therefore,
we propose a novel multi-source selection based manifold
discriminant alignment approach for HDP.

Algorithm 2. Pseudocode for MSMDA

Input: Source projects fS1; S2; . . . ; SKg, Target project T : {Xl
t,

Xu
t }, where Xl

t denotes training target data and Xu
t

denotes test target data ;
Output: The predicted label ofXu

t .
1: for i ¼ 1 toK do
2: Train MDAmodel with fSi;X

l
tg;

3: Use MDA to predictXl
t;

4: // evaluate performance, e.g., g-measure or AUC
5: Compute the evaluation measure ui;
6: end for
7: û ¼ sortðu); == descending order
8: Ŝ ¼ sortðSÞ; == adjust the order of sources based on u

9: threshold ¼ ûð1Þ;
10: cache ¼ fŜ1g;
11: for i ¼ 2 toK do
12: Train MDAmodel with fcache; Ŝi; X

l
tg ;

13: Use MDA to predictXl
t;

14: Compute the evaluation measure ui;
15: if ui � threshold then
16: cache ¼ cache [Ŝi; // add Ŝi into cache
17: else
18: discard Ŝi;
19: end if
20: end for
21: Use cache andXl

t to train MDAmodel and predictXu
t .

3.2.2 Multi-Source Selection Based Manifold

Discriminant Alignment

In this section, we describe the proposed MSMDA
approach. Essentially, MSMDA is an incremental optimiza-
tion process by adding a data source at each iteration. The
key idea of MSMDA is as follows:

(1) For a given target project,we first use each source proj-
ect from multiple available sources together with a
limited amount of training target data (i.e., 10 percent
of labeled data from the target project) to build the
MDA prediction model, and then evaluate its perfor-
mance on the training target data according to the
g-measure (orAUC).

(2) We can obtain a permutation by sorting the source
projects based on descending order of g-measure to
the target project;

(3) Based on the obtained permutation, we select the
best g-measure value which corresponds to the best
source project as a threshold and add this source
project into a data cache.

(4) Then, we select a data source in turn together with
the training target data to build the MDA prediction
model and compute the g-measure. If the current
g-measure value smaller than the threshold, we dis-
card this data source. Otherwise, we add this data
source into the data cache.

(5) The process is complete when all the sources have
been traversed.

(6) Finally, we use selected sources in the data cache to
conduct defect prediction.

Algorithm 2 provides pseudocode for the proposed
MSMDA approach. The core component of MSMDA is the

396 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 4, APRIL 2019

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

MDA algorithm. The rest of this section offers further detail
on MDA.

(1) Inputs for MDA. Assuming that there are V heteroge-
neous input domains (here, a domain corresponding to a
project), each contains c classes (in this paper, c ¼ 2, that is
defective class and defect-free class). The project Xv can be
viewed as a matrix of size mv � nv. Let M ¼P

v mv and
N ¼P

v nv be the total metrics and total instances of all proj-
ects respectively. Specifically, the first V�1 domains represent
the source projects and the V th domain represents the target proj-
ect. Each source contains a data set Xs ¼ xi

sjnsi¼1 and a label
set Ys ¼ yisjnsi¼1, s ¼ 1; 2; . . . ; V � 1, where xi

s denotes the ith
instance in Xs, y

i
s is the corresponding label and ns is the

number of instances in Xs. The target consists of a small
amount of labeled instances Xl

t ¼ xitjnli¼1 (the corresponding
label set is denoted by Y l

t ¼ yitjnli¼1), and plenty of unlabeled
instances Xu

t ¼ xi
tjnlþnui¼nlþ1, where xi

t denotes the ith instance
in Xt, nl and nu are the number of labeled and unlabeled
instances in the target respectively. Xt ¼ Xl

t [Xu
t , and

nt ¼ nl þ nu. Instance in source Xs can be represented as
xi
s ¼ ½ai1s ; ai2s ; . . . ; aims

s
 and instance in targetXt can be repre-

sented as xi
t ¼ ½ai1t ; ai2t ; . . . ; aimt

t
. Here, aijs (a
ij
t) represents the

value of the jth metric in xi
s(x

i
t), ms and mt denote the size

of metrics for the source and target, respectively. Consider-
ing the large difference in values of different metrics, we
first employ the z-score normalization (i.e., zero mean and
unit standard deviation) to preprocess data, which is similar
to the N2 normalization [34].

The goal of MDA is to learn V projection matrices (i.e.,
Pv 2 mv � d; v ¼ 1; 2; . . . ; V) to map the V input domains to
a shared d-dimensional subspace, where (1) the distribu-
tions of data between each source and target domains are
close to each other, (2) the local geometrical structures of
each domain is preserved, (3) the instances from the same
class across the input domains are located as close together
as possible and (4) the instances from different classes are
well separated from each other. Fig. 3 illustrates the sche-
matic diagram of MDA.

(2) Detailed Procedure. MDA contains the following three
terms: source-target discrepancy reducing term, locality preserv-
ing term, class discriminant term.

Source-Target Discrepancy Reducing Term. This term is used
to make the data distributions of each source and target
domains be close to each other.Wedefine this term as follows:

Fred ¼
XV�1
a¼1

Xna
i¼1

Xnb
j¼1

PT
a x

i
a � PT

b x
j
b

�� ��2
2
; (4)

where b ¼ V , Pa 2 Rma�d and Pb 2 Rmb�d denote the projec-
tions on source and target domains.

Locality Preserving Term. This term is used to preserve the
geometrical structure of each domain. It is defined as follows:

Floc ¼ 1

2

XV
a¼1

Xna
i¼1

Xna
j¼1

PT
a x

i
a � PT

a x
j
a

�� ��2Wa
l ði; jÞ; (5)

where Wa
l 2 Rna�na denotes the affinity matrix for the ath

domain which is built using a simple KNN graph. Entries of
the matrices are Wa

l ði; jÞ ¼ 1 if instances xi and xj from
domain v are neighbors in the KNN graph of that domain
and 0 otherwise. Here, we select 10 neighbors based on some
defect prediction papers [29], [33], [35]. This term ensures
that neighboring instances in the original domains are
mapped close to each other in the projected common sub-
space. The geometry is preserved solelywithin each graph

min
Pv;v¼1;2;...;V

Fred þ aFloc þ bFdisc

s:t: PTP ¼ I;
(6)

where I denotes an identity matrix. a and b are parameters
to balance the terms Fred, Floc and Fdisc.

(3) Optimization. Although V variables (P1; . . . ; PV) need
to be optimized in Eq. (6), they can be obtained together
after some algebraic transformations. Specifically, let
P ¼ ½P1;P2; . . .PV
, fv ¼
Omv�m1

; . . . ; Imv ; Omv�mvþ1 ; . . . ; Omv�mV

� �
, where Im is a

m�m identity matrix, and Om�r is a m� r zero matrix.
Then we have pv ¼ fvP . By substituting pv into Eq. (6), we
can rewrite the objective function as

min
P

tr PT ðLr þ aLl þ bLdÞP
� �
s:t: PTP ¼ I

; (7)

where Lr ¼
PV�1

a¼1
Pna

i¼1
Pnb

j¼1 ðfT
a x

i
a � fT

b x
j
bÞðfT

a x
i
a � fT

t x
j
bÞ

T
,

Ll ¼ 1
2

PV
a¼1

Pna
i¼1

Pna
j¼1 fT

a x
i
a � fT

a x
j
a

� �
fT
a x

i
a � fT

a x
j
a

� �T
Wa

l ði; jÞ,
and Ld ¼ 1

2

PV
a¼1

PV
b¼1

Pna
i¼1

Pnb
j¼1 T ðWa;b

s ði; jÞ � gWa;b
d ði; jÞÞ,

¼ fT
a x

i
a � fT

b x
j
b. trð	Þ denotes the trace of a matrix.

By constructing the Lagrange function of Eq. (7) and set-
ting the derivative of P to zero, we can get

ðLr þ aLl þ bLdÞP ¼ �P; (8)

where � is the Lagrange multiplier. Hence, the optimal solu-
tion of Eq. (8) can be obtained with eigenvalue decomposi-
tion technique [79] and P is determined by the d smallest
eigenvectors.

After obtained P , we can find the projected data of each
domain to the common subspace by simple matrix multipli-
cation PT

v Xv; v ¼ 1; 2; . . . ; V . Specifically, the projected data
of source and target can be represented as follows:

Ds ¼ PT
s Xs; s ¼ 1; 2; . . . ; V�1

Dl
t ¼ PT

t X
l
t; t ¼ V

Du
t ¼ PT

t X
u
t ; t ¼ V:

8><
>: (9)

Based on the projected data, we can conduct defect pre-
diction to use logistic regression (LR) classifier, which has
been widely used in defect prediction studies [28], [34], [38],
[42], [80]. The LR is implemented in LIBLINEAR [81] (an

Fig. 3. Illustration of the MDA algorithm. Different colors represent the
instances in different projects. “�” represents the labeled defective instan-
ces, “~” the labeled defect-free instances and “tu” the unlabeled instances.

LI ET AL.: ON THE MULTIPLE SOURCES AND PRIVACY PRESERVATION ISSUES FOR HETEROGENEOUS DEFECT PREDICTION 397

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

award-winning library for large linear classification). For
LIBLINEAR execution, we use the options “-S 0” (i.e., logis-
tic regression) and “-B 1” (i.e., no bias term added) as used
by Nam et al. [34]. Algorithm 3 provides the detail optimi-
zation process of MDA.

Algorithm 3. The MDA Algorithm

Input: Source data Xs and corresponding class label Ys,
s ¼ 1; 2; . . . ; V � 1; training target data Xl

t and corre-
sponding class label Y l

t ; test target data Xu
t , t ¼ V ; V is

the number of input projects;
Output: The predicted label Ŷ u

t ofXu
t .

1: Employ the z-score normalization to preprocessXs,X
l
t andXu

t ;
2: Construct terms Lh, Ll and Ld;
3: Construct the objective function by using Eq. (7);
4: Obtain the projected transformation P by using Eq. (8);
5: Obtain the projected featuresDs,D

l
t andDu

t by using Eq. (9);
6: Ŷ u

t �ClassifierðDs;D
l
t;D

u
t ; Ys; Y

l
t Þ, i.e., combine Ds and Dl

t

to predictDu
t .

Class Discriminant Term. To ensure that instances from
the same class get close together, while instances from dif-
ferent classes move away from each other, we define the
class discriminant term as follows:

Fdisc ¼ 1

2

XV
a¼1

XV
b¼1

X
ði;jÞ2s

pTa x
i
a � pTb x

j
b

�� ��2Wa;b
s ði; jÞ

0
@

�g
X
ði;jÞ2d

pTa x
i
a � pTb x

j
b

�� ��2Wa;b
d ði; jÞ

1
A;

(10)

where Wa;b
s and Wa;b

d denote the similarity and dissimilarity
graph matrix between the ath and bth domains, respec-
tively. Wa;b

s ði; jÞ ¼ 1, if xi
a and xj

b are from the same class
and 0 otherwise. Wa;b

d ði; jÞ ¼ 1, if xi
a and xj

b are from the dif-
ferent classes and 0 otherwise (including unlabeled data in
the target). Note that the term Fdisc considers relations of
labeled instances in multiple different domains.

In order to simultaneously achieve the above three goals
in the projected common subspace, we combine Eqs. (4), (5)
and (10), and define the objective function of MDA as
follows:

4 EXPERIMENTS

4.1 Data Set

In experiments, we employ 28 publicly available and com-
monly used projects from five different groups including
NASA4 [39], SOFTLAB4 [29], ReLink5 [82], AEEEM6 [40]
and PROMISE4 [45] as the experimental data. Table 2 shows
the details about the datasets we used.

NASA dataset is publicly available and commonly used
for defect prediction [7], [39]. Each dataset in NASA repre-
sents a software system or sub-system, which contains the
corresponding defect-marking data and various static code
metrics. Static code metrics of NASA datasets include size,

readability, complexity and etc., which are closely related to
software quality. Here, we use only five projects including
CM1, MW1, PC1, PC3 and PC4 from NASA dataset, since
these five projects have 37 same metrics.

Turkish software dataset (SOFTLAB) consists of AR1,
AR3, AR4, AR5 and AR6 projects. There exist 28 common
metrics between SOFTLAB and NASA, which are both
obtained from PROMISE repository. Although the defect
data of these two groups are from the same repository, these
datasets are very different from each other.

ReLink was collected by Wu et al. [82] and the defect
information in ReLink has been manually verified and cor-
rected. ReLink has 26 complexity metrics, which are widely
used in defect prediction [82]. Among three used datasets,
the number of instances ranges from 56 to 399, while the
number of attributes is fixed to 26.

The AEEEM data set was collected by D’Ambros
et al. [40]. AEEEM consists of 61 metrics: 17 source code
metrics, 5 previous-defect metrics, 5 entropy-of-change met-
rics, 17 entropy-of-source-code metrics, and 17 churn-of-
source code metrics [40].

The defect datasets in the fifth group are originally col-
lected by Jureczko and Madeyski [45] from the online
PROMISE data repository, which consists of several open
source projects. These datasets are also used to study the
privacy issue for defect prediction [60]. The PROMISE data-
sets have 20 metrics in total, which contains McCabe’s
cyclomatic metrics, CK metrics and other OO metrics.

TABLE 2
Details of Project Used in Experiment

Group Project # of

metrics

of total

instances

of

defective

instances

% of

defectiveinstances

NASA

CM1 37 327 42 12.84%

MW1 37 253 27 10.67%

PC1 37 705 61 8.65%

PC3 37 1,077 134 12.44%

PC4 37 1,458 178 12.21%

SOFTLAB

AR1 29 121 9 7.44%

AR3 29 63 8 12.70%

AR4 29 107 20 18.69%

AR5 29 36 8 22.22%

AR6 29 101 15 14.85%

ReLink

Apache 26 194 98 50.52%

Safe 26 56 22 39.29%

ZXing 26 399 118 29.57%

AEEEM

EQ 61 324 129 39.81%

JDT 61 997 206 20.66%

LC 61 691 64 9.26%

ML 61 1,862 245 13.16%

PDE 61 1,497 209 13.96%

PROMISE

ant1.3 20 125 20 16.00%

arc 20 234 27 11.54%

camel1.0 20 339 13 3.83%

poi1.5 20 237 141 59.49%

redaktor 20 176 27 15.34%

skarbonka 20 45 9 20.00%

tomcat 20 858 77 8.97%

velocity1.4 20 196 147 75.00%

xalan2.4 20 723 110 15.21%

xerces1.2 20 440 71 16.14%

4. http://openscience.us/repo/
5. http://www.cse.ust.hk/�scc/ReLink.htm
6. http://bug.inf.usi.ch/

398 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 4, APRIL 2019

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

http://openscience.us/repo/
http://www.cse.ust.hk/~scc/ReLink.htm
http://www.cse.ust.hk/~scc/ReLink.htm
http://bug.inf.usi.ch/

4.2 Evaluation Measures

In experiments, to evaluate the privacy of our SRDO algo-
rithm, we employ the privatization measure: IPR. To evalu-
ate the performance of our multi-source heterogeneous
defect prediction approach, we employ two widely used
measures: g-measure and AUC.

4.2.1 Privacy Evaluation

To measure privacy, we use the Increased Privacy Ratio
(IPR) [60] as the percent of data not found to evaluate the
privacy ability of an algorithm. We first apply EFB to the
sensitive attribute to create subrangs of values, represented
by a set S ¼ fs1; s2; . . . ; sjSjg. Then, we assume that attackers
have access to privatized data T 0 of an original dataset T ,
and some background knowledge of non-sensitive values
for a specific target in T . We refer to the background knowl-
edge as a query. Given queries Q ¼ fq1; q2; . . . ; qjQjg, the IPR
can be defined as follows:

100 � IPRðT �Þ ¼ 1� 1

Qj j
XQj j
i¼0

BreachðS;G�i Þ; (11)

where, BreachðS;G�i Þ ¼
1 if smaxðGiÞ ¼ smaxðG0iÞ;
0 otherwise:

�
G�i is

a group of rows from any dataset which matches qi.Gi is the

group from the original dataset andG0i is the group from the

private data candidate which matches qi. smaxðGiÞ is the

most common sensitive attribute value in the set s. For

example, G0i ¼ f½0�1
; ð2�4
; ð2�4
g denotes the results of

ith query returned from the privatized dataset T 0, then
smaxðG0iÞ ¼ fð2�4
g.

The higher IPRs the better a privacy algorithm, so a good
privacy algorithm will have IPRs closer to 100 percent while
a poor privacy algorithm will have IPRs closer to 0 percent.

A query generator is used to generate queries based onwhat
the attacker may know about a target in the original dataset.
In order to maintain some “realism” to the attacks, a selected
sensitive attribute and the class attribute are not used as part
of query generation. Therefore, these attribute values (sensi-
tive and class) are unchanged in the privatized dataset.

Assume the query size is 1, which is used to measure the
number of attribute subrange pairs. The process of the gen-
erator to create a query is as follows:

(1) Given a set of attributesB (i.e., the metric set of defect
dataset except the sensitive and class attributes) and
all their possible subranges (applying EFB with 10
bins to create subranges for the original data).

(2) Randomly select an attribute b from B, for example,
the attribute b may be has three possible subranges
f½0�1
; ð1�3
; ð3�6
g.

(3) Randomly select a subrange from all possible sub-
ranges of b, for example, fð1�3
g.

In the end, the query we generate is b ¼ fð1�3
g. Each
query must also satisfy: (1) they must not be the same as
another query, (2) they must return at least one instance
from the original data set.

4.2.2 Prediction Performance Evaluation

We employ two commonly used comprehensive measures
to assess the performance of the defect predictors:

g-measure [33], [36], [58], [60], [61] and AUC [37], [42], [51],
[83], [84], [85].

These measures can be defined by using true positive
(TP), false negative (FN), false positive (FP) and true nega-
tive (TN) in Table 3. Here, TP, FN, FP and TN are the num-
ber of defective instances that are predicted as defective, the
number of defective instances that are predicted as defect-
free, the number of defect-free instances that are predicted
as defective, and the number of defect-free instances that
are predicted as defect-free, respectively.

Probability of detection (Pd) or recall is defined as TP/(TP
+FN) which denotes the ratio of the number of defective
instances that are correctly classified as defective to the total
number of defective instances. Probability of false alarm
(Pf) is defined as FP/(FP+TN) which denotes the ratio of the
number of defect-free instances that are wrongly classified
as defective to the total number of defect-free instances.
Like f-measure, the g-measure [60] is harmonic mean of Pd
and 1-Pf, which is defined as 2*Pd*(1-Pf)/(Pd+(1-Pf)). Here,
the 1-Pf represents specificity [86].

AUC is the area under the receiver operating characteristic
curve. This curve is plotted in a two-dimensional space with
Pf as x-coordinate and Pd as y-coordinate. TheAUC is known
as a useful measure for comparing different models and is
widely used because AUC is unaffected by class imbalance
as well as being independent from the prediction threshold.
The higher AUC represents better prediction performance
and the AUC of 0:5means the performance of a random pre-
dictor [56]. Lessmann et al. [83] and Ghotra et al. [84] suggest
to use theAUC for better comparability. Hence, we also select
theAUCmeasure as our performancemeasure.

All the above evaluation measures range from 0 to 1.
Obviously, an ideal defect prediction model should hold
high values of g-measure and AUC. As observed by Menzies
et al. [87], precision is highly unstable performance indicator
when datasets contain a low percentage of defects. From
Table 2, we see that the percentage of defects is low in most
cases. As a result, other measures such as precision, accuracy
and f-measurewere not used in this paper.

4.3 Experimental Settings

4.3.1 Experiment Protocol

In the Single-Source Scenario. For each trial, we select one
project from 28 projects as the target, and each project from
other four groups is used as the source in turn. For example,
when CM1 in NASA of Table 2 acts as the target, there exists
23 (28-5) cross-project prediction combinations. Since we
mainly focus on prediction across projects with heteroge-
neous metric sets, we did not conduct defect prediction
across projects in the same group where projects have the
same metric sets. In total, we have 600 possible prediction
combinations from these 28 projects of five groups. In the
multi-source scenario: for each trial, one project from 28 proj-
ects is selected as the target, and all projects from the other

TABLE 3
Four Kinds of Defect Prediction Results

Actual defective Actual defect-free

Predict defective TP FP
Predict defect-free FN TN

LI ET AL.: ON THE MULTIPLE SOURCES AND PRIVACY PRESERVATION ISSUES FOR HETEROGENEOUS DEFECT PREDICTION 399

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

four groups are used as the source projects together. The
same process is followed when the projects are privatized.
Note that the test target data is not privatized.

4.3.2 Evaluation Settings

For testing privacy, assume that a project has mi attributes
(metrics) with the jth attribute has nj distinct subranges. If
the query size is k, there will be Ck

mi
� ðnjÞk possible queries.

In this study, the used query sizes include 1, 2 and 4. It is
unrealistic and unnecessary to enumerate all possible
queries for all possible query sizes, especially when the
number of Quasi-identifiers (QIDs)7 attributes is very large.
For example, the project CM1 in NASA of Table 2 has 36
QIDs attributes (all attributes minus the sensitive attribute),
if each QIDs attribute has 10 distinct subranges and the
query size is 4, then the generator will create C4

36 � 104 ¼
589; 050; 000 queries. We randomly select 1000 unique
queries from the total number of possible queries for each
query size in our experiments. If the number of queries gen-
erated is less than 1000, we use the actual generated queries.
Similar to the works [60] and [61], we use the Lines of Code
metric as the sensitive attribute in this study.

For testing utility, we conductHDP experiments for all the
projects of Table 2 in their original state and after they have
been privatized. For the original data, we repeat the above
study 10 times, each time using 10 percent available instances
in a target project as training target data and the remaining
90 percent instances of the target project used for testing. For
the privatized data, we run SRDO 10 times since there involves
a degree of randomness in SRDO algorithm for obfuscating
data. Therefore, we repeat the above study 100 (10� 10)
times in the privatized scenario, each time performs the same
process as their original state. Then, we report the median
results for each target project across themultiple runs.

4.3.3 Baselines

To evaluate the privacy of SRDO, we compare it with CLIFF
+MORPH [60], which is a state-of-the-art privacy-
preserving algorithm for CPDP.

Based on the privatized datasets, we conduct HDP
experiments to assess our multi-source heterogeneous
defect prediction approach (MSMDA). Hence, we compare
MSMDA with prior methods including: WPDP, NN-
filter [29], TCA+ [34], CPDP-IFS [43], CCA+ [41], HDP by
KSAnalyzer (HDP-KS, KSAnalyzer led to the best predic-
tion performance in the paper) [42], SC [51], MultiSource-
TrAdaBoost [88] and HYDRA [38]. Note that we do not
compare the CCT-SVM [44] method. CCT-SVM is just tai-
lored for the SVM classifier, and it cannot be applied to
other classifiers directly.

NN-filter and TCA+ are two representative CPDP meth-
ods. The idea of NN-filter is to select suitable training data
from other projects close to within-project data. TCA+ com-
bines data normalization techniques and a feature-based
transfer learning method (i.e., transfer component analysis,
TCA) to CPDP.

CPDP-IFS, CCA+ and HDP-KS are three HDP methods.
CPDP-IFS uses distribution characteristics vectors of each

instance as new metrics to enable defect prediction. The
goal of CCA+ is to maximize the correlation of the source
and target data, and make the data distributions of source
and target similar. HDP-KS aims to match the selected
source and target metrics based on the metric similarity.

SC is a spectral clustering method, which applies
connectivity-based unsupervised classifier for defect
prediction.

MultiSourceTrAdaBoost is an instance transfer method
which uses multiple sources for object recognition and
detection. It considers each source individually in combina-
tion with the target and retains only the single best combi-
nation after each boosting round. Intrinsically, HYDRA is a
task-based boosting technique for instance transfer and it
includes genetic algorithm and ensemble learning two
phases. Different from the above methods [38], [88], our
MSMDA can be referred to as feature representation based
transfer approach [75]. The intuitive idea is to learn a
“good” feature representation for the target domain, and
the knowledge used to transfer across domains is encoded
into the learned feature representation. Additionally, TCA+
and CCA+ also belong to this case.

4.3.4 Parameter Settings

For MSMDA, there are three parameters a, b and g. a is
used to control the effect of locality preserving term, b is
used to control the effect of class discriminant term, and g is
used to balance the effect of instances from the same class
and that from different classes.

Based on the source and a limited amount of labeled
training target data (by default, 10 percent of labeled data),
we separately search the following parameter space
½0:01; 0:05; 0:1; 0:5; 1; 5; 10
 for a and b, ½0:5; 1; 2
 for g. Specifi-
cally, we first randomly divide the 10 percent labeled train-
ing target data into two halves: the first half with 5 percent
and the second half with another 5 percent. Then we use the
first half and the source together as the training set while
the second half as the test set. In a reverse way, we use
the second half and the source together as the training set
while the first half as the test set. This process is similar to a
two-fold cross validation. Finally, we can achieve the opti-
mal parameter values according to the overall best g-measure
result across all target projects.

As observed by Menzies et al. [7], the defect prediction
data has low dimensionality nature. Gao et al. [89] com-
pared various feature selection techniques, they found that
the performance of the defect prediction models either
improved or remained unchanged when over 85 percent of
the software metrics were eliminated. Furthermore, Nam
and Kim also [42] selected the top 15 percent of metrics in
their HDP study. In this paper, for the projected dimension
d in MSMDA, we set it to 0:15 � dt. Here, dt is the number of
metrics of target project.

For the other compared methods, we follow the default
parameter settings used in their papers.

4.4 Experimental Design

These experiments are designed to address the following
two research questions.

RQ1: How to design a privacy preservation algorithm that can
provide favorable privacy and utility for the privacy needs of HDP?

7. Attribute whose values alone or together with others can poten-
tially identify an instance.

400 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 4, APRIL 2019

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

CLIFF+MORPH [60] has achieved good privacy-
preserving results and prediction performance for CPDP. In
order to address RQ1, we compare SRDO with CLIFF
+MORPH for the privacy needs of HDP. For evaluating the
privacy of each algorithm,we separately calculate the IPR for
the privatized data produced by CLIFF+MORPH and SRDO.
In terms of evaluating the utility, we first use MSMDA to
build HDP models on the original data and privatized data
produced by CLIFF+MORPH and SRDO, respectively. Then,
we observe the g-measure and AUC values of the learned
models and report on themedian performance.

RQ2: How effective is using multiple heterogeneous source
projects to improve the HDP prediction performance?

In order to address RQ2, we conduct HDP experiments
under two settings: using a single source project and using
multiple source projects. Accordingly, we split RQ2 into
two following sub-questions.

(1) RQ2.1: Does MSMDA provide better HDP performance
than existing representative methods that use a single
source project?

To answer RQ2.1, we compare MSMDA to the
conventional WPDP method, the typical CPDP
methods NN-filter and TCA+, the HDP methods
CPDP-IFS, CCA+ and HDP-KS, the spectral cluster-
ing based method SC. Additionally, we also compare
the results of MSMDA using multiple sources and
single source. Here, we refer to MSMDA using a sin-
gle source project as sMDA.

(2) RQ2.2: Does MSMDA provide better HDP performance
than existing representative methods that use multiple
source projects?

To answer RQ2.2, we compare MSMDA with two
representative multi-source methods, including Mul-
tiSourceTrAdaBoost and HYDRA.

For NN-filter, TCA+, MultiSourceTrAdaBoost and
HYDRA, we conduct HDP experiments using common met-
rics shared by source and target projects, because these
methods are not designed originally for HDP. For Multi-
SourceTrAdaBoost and HYDRA, since they need a small
amount of labeled instances from the target, we take all
instances from the source and 10 percent of labeled instan-
ces from the target to predict the remaining 90 percent of
instances in the target. For other compared methods, to
ensure that we use the same test set to evaluate all methods
for a fair comparison, we remove the same 10 percent of
instances in the target and predict the same remaining
90 percent of instances in the target. We implement NN-fil-
ter, TCA+, CPDP-IFS, HDP-KS, SC, MultiSourceTrAdaBoost
and HYDRA based on MATLAB programming by follow-
ing the settings of corresponding papers. To be fair, we
choose logistic regression classifier for all compared meth-
ods (except SC which is a clustering-based method) and
apply z-score normalization to all of training and test data
before running these methods.

We use the above methods to separately build prediction
model and evaluate the performance of these methods on
the 28 heterogeneous projects from five groups. To check
whether our approach can obtain better prediction perfor-
mance with the compared methods are statistic significant,
for each target, we employ the non-parametric Wilcoxon

rank-sum test (also called the Mann-Whitney U test8) [90] at
a confidence level of 95 percent on 100 random running
results which corresponds to the detailed g-measure and
AUC values. This statistic test has been used in some defect
studies [2], [29], [35], [37]. As recommended by Menzies
et al. [2], Wilcoxon rank-sum test does not demand that the
two compared populations are of the same size and it can
avoid the need of Bonferroni-Dunn test to counteract the
results of multiple comparisons [91]. In this paper, the com-
pared methods WPDP and SC only have 10 random run-
ning results, as compared with other methods and
MSMDA, they have different size of populations. So, we
choose the non-parametric Wilcoxon rank-sum test. Then,
we report the win/tie/loss (w/t/l) results of our approach
against each compared method, similar to prior studies
in [30], [32], [36], [38]. “Win” means that the results of our
approach are significantly better than those of baselines at a
confidence level of 95 percent, “tie” means ”equal” (no sta-
tistical significance), and otherwise “lose”. By using the w/
t/l evaluation, we can investigate the number of projects in
which our approach can outperform the compared meth-
ods. Note that the total number of projects is 28.

Besides, tomeasure the degree of differences in the results
between our approach and the baselines, we compute Cliff’s
delta (d), which is a non-parametric effect size test [92], [93].
In this context, d is a measure of how often one the values in
one method are larger than the values in a second method.
All possible values of d are in the closed interval ½�1; 1
,
where �1 or 1 indicates that all values in one method are
smaller or larger than those of the other method, and 0 indi-
cates that the measure in the two methods is completely
overlapping. The mappings between different d values and
their effectiveness levels are shown in Table 4.

5 EXPERIMENTAL RESULTS

5.1 Results for RQ1

Fig. 4 displays the IPR, g-measure and AUC values of each
privatized project. For each chart, we plot IPR on the x-axis,
g-measure and AUC values on the y-axis respectively. The
g-measure and AUC values are based on the proposed
MSMDA approach and the IPR is based on queries of size 1.
In Fig. 4, the horizontal lines show the g-measure and AUC
values of the original project and the vertical line shows
IPR=80%, respectively.

From Fig. 4, we can see that the privatized projects pro-
duced by CLIFF+MORPH and SRDO appearing in the upper
right of these lines, which means that both data are private
enough (i.e., the IPR over 80 percent) and good results can
be achieved with both privatized data. The reasons that

TABLE 4
Mappings of Cliff’s Delta Values to Effectiveness Levels

Cliff’s Delta (jdj) Effectiveness Levels

jdj < 0:147 Negligible (N)
0:147 � jdj < 0:33 Small (S)
0:33 � jdj < 0:474 Medium (M)
0:474 � jdj Large (L)

8. https://en.wikipedia.org/wiki/Mann-Whitney_U_test

LI ET AL.: ON THE MULTIPLE SOURCES AND PRIVACY PRESERVATION ISSUES FOR HETEROGENEOUS DEFECT PREDICTION 401

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

https://en.wikipedia.org/wiki/Mann-Whitney_U_test

CLIFF+MORPH and SRDO have enough privacy include
the following two aspects: (1) CLIFF preserves the privacy
of the instances it deletes since these instances are no longer
available; (2) MORPH or SRDO increases the privacy of all
mutated instances since their original data distorted. In
terms of utility, due to the instance selection done by CLIFF,
as claimed by Peters and Menziers [60], most g-measure and
AUC values are higher than those of the original projects.

With regard to the IPR results between CLIFF+MORPH
and SRDO, we find that most of the privatized projects pro-
duced by SRDO have achieved comparable IPR values to
CLIFF+MORPH. We also find that most of the g-measure
and AUC values of SRDO are higher than CLIFF+MORPH.
This is because SRDO simultaneously uses NUN and NSN
as disturbances, and employs sparse representation based
the nearest neighbor selector that is more likely to select the
closest instance for the original instance. So the utility of the
dataset can be further maintained. In conclusion, SRDO
achieves comparable privacy and yields better g-meausre
and AUC values in utility than CLIFF+MORPH in most of
the cases under the HDP setting.

The IPR results for query size 2 and 4 are shown in Fig. 7
of Section 6.1. This summary of results also hold true when
measuring IPRs for query sizes 2 and 4 (see Fig. 7).

5.2 Results for RQ2

5.2.1 Results for RQ2.1

Table 5 shows themedian g-measure andAUC results for each
target project between our approach and the compared
methods that use a single source project. In Table 5, “All”
refers to the median values across 28 target projects in terms
of g-measure and AUC, and the bold font represents the best
values for each target project. “API (%)” refers to the average

performance improvement of our approach over the baselines.
From Table 5, we can observe that MSMDA obtains the high-
est g-measure and AUC values in most cases as compared
withWPDP using 10 percent training data, NN-filter, TCA+,
CPDP-IFS, CCA+, HDP-KS, SC and sMDA. With respect to
the performance across 28 target projects (i.e., “All” in the
last row of each table), MSMDA improves the g-measure val-
ues by 8.1, 11.5, 9.8, 15.3, 8.2, 9.1, 4.5 and 3.4 percent, and the
AUC values by 14.9, 19.1, 16.9, 21.2, 10.7, 8.7, 11.3 and
3.0 percent over WPDP with 10 percent training data, NN-fil-
ter, TCA+, CPDP-IFS, CCA+,HDP-KS, SC and sMDA, respec-
tively. Thus, we can see that the improvement is 3.4-15.3 percent in
terms of g-measure and 3.0-19.1 percent in terms of AUC.

The overall API of g-measure and AUC across 28 target
projects are 8:8 and 13:2 percent, respectively. With regard
to the API for each target project, we find that all the proj-
ects can achieve different degrees of improvement in terms
of g-measure (except for the Safe project) and AUC. Specifi-
cally, the API of g-measure and AUC are from -0.2 to
37:4 percent and from 2:7 to 28:0 percent, respectively.

Possible reasons that MSMDA achieves better results are
as follows. Compared with NN-filter, TCA+, CPDP-IFS, CCA+
and HDP-KS: (1) These methods only utilize single source to
predict the target project, while MSMDA takes advantage of
multiple source projects. Generally, multiple source projects
can provide more useful information than a single one.
With these useful information contained in multiple sour-
ces, the learned prediction model can own better prediction
capability in the target project. (2) They don’t consider
utilizing the label information of the source data, which is
available in practice. Different from these methods,
MSMDA utilizes the useful source label information to learn
projection matrices, such that instances can own favorable

Fig. 4. The g-measure versus IPR and AUC versus IPR with query size 1 for each target project. The horizontal lines show the g-measure and AUC
values of the original project and the vertical line shows IPR with value 80 percent, respectively. Note that points above and to the right of these lines
are private enough (IPR over 80 percent) and performs as good as or better than the original data.

402 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 4, APRIL 2019

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

discriminant ability under the learned projection. In addi-
tion, for NN-filter and TCA+, they only adopt the common
metrics shared by the source and target projects, which will
limit their performance, because some informative metrics
necessary for building a good prediction model may not be
in the common metrics across projects [41], [42]. Compared
with the WPDP using 10 percent training data: Generally, good
prediction models can be built when sufficient historical
data is available for WPDP [28], [29], [30]. However, in

practice, it is difficult to collect sufficient historical data for
new projects. In this case, the performance of WPDP is usu-
ally limited. Different from WPDP, our approach takes
advantage of information contained in multiple source proj-
ects. Compared with SC: SC belongs to unsupervised cluster-
ing classifiers, who usually underperform supervised ones
in terms of their predictive power [51].

Table 6 shows the win/tie/loss results of our approach
against each compared method in terms of the g-measure
and AUC values. We can see that MSMDA can statistically
significantly improve the performance of baselines in most
cases. For example, compared with HDP-KS, MSMDA
obtains statistically significant improvements for 21 (20)
projects out of 28 in terms of g-measure (AUC) values.

To give a clearer comparison of the prediction results, we
count the number of projects in each effectiveness level
according to Table 4, and report the results in Table 7. From
Table 7, we can observe that MSMDA produces significant
improvements in most cases as compared with related
methods. Taking the results of MSMDA versus HDP-KS as
an example, MSMDA achieves non-negligible differences
for 23 out of 28 projects (22 out of 28 projects) in terms of the
g-measure (AUC) values.

In general, we can draw the conclusion that MSMDA can
provide higher HDP performance than existing representa-
tive methods that use a single source project.

TABLE 5
Our Approach Compared with WPDP Using 10 Percent Training Data, and with NN-Filter, TCA+, CPDP-IFS,

CCA+, HDP-KS and SC That Use a Single Source Project for Each Target

Target g-measure AUC

WPDP NN-

filter

TCA+ CPDP-

IFS

CCA+ HDP-

KS

SC sMDA MS MDA API WPDP NN-

filter

TCA+ CPDP-

IFS

CCA+ HDP-

KS

SC sMDA MS MDA API

CM1 59.9 59.6 60.6 56.0 60.4 59.3 61.5 60.8 62.0 3.8 62.3 61.8 64.7 59.4 66.1 67.6 64.2 67.3 68.6 7.1

MW1 64.4 64.5 63.4 62.7 66.1 65.6 67.4 65.6 66.8 2.9 64.4 64.8 68.9 64.2 69.7 70.6 67.8 70.7 73.1 8.2

PC1 63.7 60.7 64.0 58.8 64.1 64.2 64.2 66.2 69.2 9.6 64.7 61.7 64.9 61.4 71.6 72.6 65.0 75.0 79.2 18.6

PC3 66.8 59.3 63.0 56.9 58.8 64.2 67.7 70.9 71.6 13.4 66.9 61.1 64.7 59.9 62.9 73.3 68.1 77.3 77.8 17.3

PC4 73.2 61.2 67.9 58.1 62.6 63.5 66.9 71.6 72.2 10.6 76.3 61.9 68.2 62.2 67.8 70.3 67.0 78.2 79.1 15.4

AR1 47.9 56.0 56.1 56.3 60.1 59.3 64.1 56.1 58.2 2.8 49.4 56.5 57.5 58.8 66.8 71.9 65.1 60.4 67.3 12.0

AR3 43.9 71.3 74.4 71.7 74.0 73.4 73.8 69.3 72.4 8.0 46.9 71.6 76.0 72.9 81.6 81.9 76.5 68.4 74.6 6.6

AR4 68.4 70.8 73.2 63.4 70.4 66.6 73.0 71.4 73.4 5.6 68.9 71.3 76.5 66.6 78.0 78.6 73.2 80.4 82.4 11.5

AR5 81.7 74.9 80.6 73.1 79.8 80.6 84.4 81.0 82.8 4.3 81.9 75.2 80.9 74.6 85.6 88.6 84.9 91.4 92.3 11.9

AR6 58.2 54.2 49.7 60.6 60.7 56.1 61.2 59.4 62.3 8.8 60.1 56.8 56.2 62.8 63.6 61.7 61.0 65.7 68.4 12.4

Apache 63.4 58.2 62.6 52.8 62.5 58.6 62.6 62.8 63.6 5.6 64.8 64.4 68.0 60.1 70.7 68.0 66.2 71.2 72.6 9.2

Safe 66.2 64.5 69.4 64.8 72.1 67.2 71.8 66.0 67.5 -0.2 67.6 67.3 71.6 67.5 76.2 74.2 72.5 76.7 78.1 9.2

ZXing 50.6 51.4 52.5 52.2 55.7 54.6 55.7 55.8 56.2 5.1 53.5 57.5 58.6 57.3 61.1 63.4 59.5 62.0 64.7 9.7

EQ 67.5 56.2 59.3 56.8 67.3 61.6 67.7 67.8 68.1 8.7 69.2 61.8 65.1 63.7 73.8 77.3 69.6 82.0 82.7 18.6

JDT 74.1 63.6 68.8 64.2 63.2 65.4 75.9 73.3 76.2 11.7 75.3 66.1 71.9 67.1 64.8 72.2 76.5 78.6 82.4 15.7

LC 68.1 54.7 55.2 61.3 62.0 58.2 71.4 71.9 72.7 16.9 69.5 58.7 61.2 64.3 64.5 64.4 72.1 79.3 80.0 20.8

ML 63.5 58.9 62.0 57.3 55.8 58.2 60.6 62.3 63.6 6.5 66.2 61.3 64.8 59.8 57.5 63.3 62.7 71.5 72.8 15.3

PDE 61.5 63.1 65.4 60.4 59.1 63.3 66.8 65.1 67.5 7.2 63.8 64.0 66.3 62.6 60.4 68.8 67.2 72.0 74.2 13.4

ant1.3 66.8 70.1 69.9 69.8 61.9 65.8 66.4 70.2 71.6 6.1 66.8 70.4 70.0 70.8 64.4 73.7 69.1 78.1 80.2 14.2

arc 60.0 59.1 60.4 60.2 60.3 60.3 54.8 60.8 61.3 3.2 62.4 61.9 62.7 62.9 70.4 66.9 55.1 67.1 67.8 7.0

camel1.0 49.2 60.7 56.3 60.7 61.1 61.0 54.4 63.0 66.5 14.8 56.2 61.9 58.9 67.1 64.8 65.5 56.4 68.2 73.5 18.5

poi1.5 64.5 53.7 58.4 57.8 60.4 60.4 66.8 67.1 68.2 12.1 65.4 58.1 63.7 62.8 61.2 69.9 67.6 74.0 75.2 15.7

redaktor 59.6 48.0 47.3 50.3 59.5 57.1 40.2 64.0 65.2 25.1 59.8 50.7 50.8 54.2 60.9 61.1 37.4 67.7 68.8 28.0

skarbonka 61.7 60.6 59.0 62.1 64.0 62.5 73.5 68.2 70.0 10.0 61.7 62.0 60.9 64.5 62.5 70.1 79.7 71.3 73.0 10.5

tomcat 67.7 74.1 76.2 67.8 58.5 68.1 71.7 72.9 73.6 6.3 68.5 74.5 76.3 69.4 61.7 74.3 73.1 80.3 82.1 14.3

velocity1.4 64.2 37.6 31.7 41.2 60.5 52.3 55.8 64.6 65.8 37.4 64.8 48.6 45.5 47.3 63.7 62.4 59.3 67.3 69.3 23.5

xalan2.4 64.4 68.0 67.8 64.0 58.0 62.0 67.6 68.8 70.3 8.4 65.7 69.5 72.0 65.9 60.1 68.7 68.4 75.7 76.4 12.4

xerces1.2 50.5 40.6 38.9 41.8 44.7 46.4 43.7 49.3 52.0 17.8 54.4 53.4 54.1 50.6 53.0 51.2 44.4 50.3 52.6 2.7

All 62.0 60.1 61.0 58.1 61.9 61.4 64.1 64.8 67.0 8.8 65.1 62.8 64.0 61.7 67.6 68.8 67.2 72.6 74.8 13.2

The last row shows the median g-measures and AUC across 28 target projects. “API (%)” denotes the average performance improvement of our approach com-
pared to the baseline methods. The best prediction values are in bold font.

TABLE 6
Win/Tie/Loss Results of Our Approach Against Each Compared
Method in Terms of g-Measure and AUC That Use a Single

Source Project

MSMDA versus Baselines w/t/l

g-measure AUC

MSMDA versus WPDP 23 4 1 25 2 1
MSMDA versus NN-filter 22 5 1 25 2 1
MSMDA versus TCA+ 21 4 3 23 3 2
MSMDA versus CPDP-IFS 25 3 0 27 1 0
MSMDA versus CCA+ 20 5 3 22 4 2
MSMDA versus HDP-KS 21 5 2 20 6 2
MSMDA versus SC 16 6 6 24 2 2
MSMDA versus sMDA 19 9 0 20 8 0

Here, ‘versus’ is short for ‘versus’.

LI ET AL.: ON THE MULTIPLE SOURCES AND PRIVACY PRESERVATION ISSUES FOR HETEROGENEOUS DEFECT PREDICTION 403

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

5.2.2 Results for RQ2.2

Table 8 shows the g-measure and AUC results for each target
project between our approach and the compared methods
that use multiple source projects. The median g-measure and
AUC results across 28 target projects are also reported in the
last row of the table (denoted as “All”) and the best values of
each target project are in bold font. As shown in Table 8,
MSMDA achieves the best prediction values in most projects

as compared with MultiSourceTrAdaBoost and HYDRA in
terms of g-measure and AUC. In particular, compared with
MultiSourceTrAdaBoost and HYDRA, MSMDA improves
the median g-measure values by 5:7 and 5:4 percent, and the
median AUC values by 3:5 and 2:3 percent, respectively.
Although MultiSourceTrAdaBoost and HYDRA utilize mul-
tiple source projects for prediction, they cannot achieve satis-
factory prediction performance. A possible reason is that
they only use the common metrics shared by source and tar-
get projects for the learning of predictionmodels. The overall
API of g-measure and AUC across 28 target projects are 5:5
and 2:9 percent, respectively. With regard to the API for each
target project, we find that most projects can achieve the per-
formance improvement. Specifically, the API of g-measure
and AUC are from -3:1 to 81:3 percent and from -6:1 to
37:1 percent, respectively. However, the results of a few proj-
ects do not get improved. Possible reason could be that
MSMDA could not select the “good” data sources when
comparing to the multi-source baseline methods. Since there
could exist large distribution differences between source and
target projects, the improper data sources may bring nega-
tive influence to the learned MSMDA model, causing
MSMDA to underperform. In the future, we plan to develop
a better multi-source selection method, which can improve
the prediction performance further.

Tables 9 and 10 show the win/tie/loss and the effective-
ness results of MSMDA against MultiSourceTrAdaBoost
and HYDRA in terms of g-measure and AUC values, respec-
tively. From Table 9, we can see that MSMDA achieves sta-
tistically significant performance improvements in most of
the cases as compared with MultiSourceTrAdaBoost and
HYDRA. From Table 10, we can observe that MSMDA
obtains non-negligible effectiveness results in most cases
as compared with MultiSourceTrAdaBoost and HYDRA.
Therefore, we can conclude that MSMDA can provide
higher HDP performance than related state-of-the-art meth-
ods that use multiple source projects.

5.2.3 Scott-Knott Effect Size Difference Test

In the above experiments, we use theWilcoxon rank-sum sta-
tistic test and the effect size test separately for the evaluation.

TABLE 7
The Effectiveness Results of Our Approach Against Each

Compared Method in Terms of g-Measure and AUC
That Use a Single Source Project

MSMDA versus Baselines N/S/M/L

g-measure AUC

MSMDA versus WPDP 4 2 9 13 3 3 1 21
MSMDA versus NN-filter 5 3 9 11 3 2 1 22
MSMDA versus TCA+ 6 5 7 10 4 2 2 20
MSMDA versus CPDP-IFS 2 3 5 18 2 0 2 24
MSMDA versus CCA+ 6 4 8 10 5 4 3 16
MSMDA versus HDP-KS 5 5 7 11 6 3 5 14
MSMDA versus SC 11 3 5 9 3 1 1 23
MSMDA versus sMDA 8 5 9 6 7 4 10 7

TABLE 8
Our Approach Compared with MultiSourceTrAdaBoost

(MSTAB) and HYDRA That Use Multiple Source Projects
for Each Target

Target g-measure AUC

MS HY MS API MS HY MS API

TAB DRA MDA TAB DRA MDA

CM1 59.1 60.1 62.0 4.0 68.3 70.1 68.6 -0.9
MW1 65.0 65.3 66.8 2.5 71.4 72.3 73.1 1.7
PC1 67.6 66.5 69.2 3.2 77.7 77.3 79.2 2.2
PC3 70.9 69.8 71.6 1.8 76.9 77.0 77.8 1.1
PC4 71.6 69.0 72.2 2.7 81.9 76.9 79.1 -0.3
AR1 47.4 49.1 58.2 20.7 51.5 74.0 67.3 10.8
AR3 39.0 40.9 72.4 81.3 49.9 82.2 74.6 20.1
AR4 72.3 55.4 73.4 17.0 80.2 83.1 82.4 1.0
AR5 80.6 71.6 82.8 9.2 93.1 92.6 92.3 -0.6
AR6 55.3 36.9 62.3 40.8 63.9 68.2 68.4 3.7
Apache 62.3 69.4 63.6 -3.1 77.3 77.3 72.6 -6.1
Safe 67.2 70.8 67.5 -2.1 80.7 82.4 78.1 -4.2
ZXing 53.3 59.7 56.2 -0.2 64.4 64.6 64.7 0.3
EQ 65.7 67.0 68.1 2.7 79.4 78.7 82.7 4.6
JDT 69.7 72.0 76.2 7.6 78.0 78.4 82.4 5.4
LC 60.1 59.0 72.7 22.1 66.4 66.7 80.0 20.2
ML 62.8 63.7 63.6 0.6 69.0 68.4 72.8 6.0
PDE 65.9 66.6 67.5 1.9 71.9 71.5 74.2 3.5
ant1.3 72.3 71.5 71.6 -0.4 81.6 81.6 80.2 -1.7
arc 57.7 49.3 61.3 15.3 67.0 67.1 67.8 1.1
camel1.0 60.8 59.4 66.5 10.7 66.4 61.1 73.5 15.5
poi1.5 58.4 66.2 68.2 9.9 72.2 72.2 75.2 4.2
redaktor 47.3 37.6 65.2 55.6 50.4 50.0 68.8 37.1
skarbonka 59.0 58.6 70.0 19.1 72.7 72.8 73.0 0.3
tomcat 76.9 74.2 73.6 -2.6 81.8 81.8 82.1 0.4
velocity1.4 51.1 42.6 65.8 41.6 64.3 59.5 69.3 12.1
xalan2.4 72.1 71.5 70.3 -2.1 80.1 80.3 76.4 -4.7
xerces1.2 39.3 41.5 52.0 28.8 49.8 48.7 52.6 6.8
All 63.4 63.6 67.0 5.5 72.3 73.1 74.8 2.9

“API (%)” denotes the average performance improvement of our approach
compared to the baseline methods. The best prediction values are in bold font.

TABLE 10
The Effectiveness Results of Our Approach Against Each

Compared Method in Terms of g-Measure and AUC
Values That Use Multiple Source Projects

MSMDA versus Baselines N/S/M/L

g-measure AUC

MSMDA versus MSTAB 7 2 8 11 9 4 5 10
MSMDA versus HYDRA 7 3 9 9 11 3 6 8

TABLE 9
Win/Tie/Loss Results of Our Approach Against Each Compared

Method in Terms of g-Measure and AUC Values That Use
Multiple Source Projects

MSMDA versus Baselines w/t/l

g-measure AUC

MSMDA versus MSTAB 20 5 3 16 7 5
MSMDA versus HYDRA 19 4 5 14 7 7

404 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 4, APRIL 2019

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

Recent studies [85] and [6] suggest using the Scott-Knott
effect size difference (ESD) test9 to rank multiple different
learners and classifiers. This test is a mean comparison
approach that leverages hierarchical cluster analysis to parti-
tion the set of treatmentmeans (e.g.,means of variable impor-
tance scores, means of model performance) into statistically
distinct groups (a ¼ 0:05) with non-negligible difference.
The Scott-Knott ESD test is an alternative approach of the
Scott-Knott test [84], [94] that considers the magnitude of
the difference (i.e., effect size) of treatment means within a
group and between groups. In this paper, we use the Scott-
Knott ESD test that is provided by the ScottKnottESD
R package [95].

Similar to prior work [6], we conduct a double Scott-
Knott ESD test to compare our approach and baselines. We
first apply a Scott-Knott ESD test on the mean results from
the 100 random trails that are performed for each project
individually. After conducting the first set of Scott-Knott
ESD tests, we have a list of ranks for each method (i.e., one
rank from each project). Based on these lists of ranks, we
then apply the second run of Scott-Knott ESD test to them.
After that, the test produces a ranking of methods across all
the projects. To avoid potential comparison bias, we do not
test WPDP and SC since they have only 10 random runs as
described above. Figs. 5 and 6 show the Scott-Knott ESD
test of our approach and the baselines across 28 projects on
g-measure and AUC, respectively. We can observe that
MSMDA ranks first in these two measures. The Scott-Knott
ESD test results confirm that MSMDA overall performs bet-
ter than the baseline methods.

By Investigating RQ2.1 and RQ2.2, we can Answer RQ2 as
Follows. The utilization of well-selected multiple source
projects is helpful for improving the HDP performance. The
improvement is considerable in most cases.

6 DISCUSSION

6.1 Privacy Testing with Different Query Sizes

To further evaluate the privacy of CLIFF+MORPH and
SRDO, we conduct experiments with different query sizes
(2 and 4), and report the corresponding IPR results. Fig. 7
displays the IPR results of CLIFF+MORPH and SRDO with
query sizes 2 and 4 for each target project. We can see that

the IPR values of each target project are all larger than
80 percent for both query sizes 2 and 4, which means that
the IPR results of CLIFF+MORPH and SRDO are private
enough. We also observe that SRDO obtains similar IPR
results than CLIFF+MORPH in most cases for both query
sizes 2 and 4, which means that SRDO can yield comparable
privacy than CLIFF+MORPH. Hence, we believe SRDO is a
good alternative option for preserving privacy in a scenario
where data is shared for the purpose of HDP.

6.2 Effect of Different Percentages of Training
Target Data

In this experiment, we evaluate the effect of different percen-
tages of training target data to the performance of MSMDA.
Specifically, the used percentage of labeled training target
data ranges from 10 to 60 percent with step length 5 percent.
For example, 15 percent of the training target data together
with source project data are used for building the prediction
model, the remaining 85 percent of instances in the target are
used for testing. Additionally, we investigate howmany per-
centages of labeled training target data should be employed
together with source projects to achieve comparable predic-
tion performance with WPDP under sufficient historical
data. For WPDP under sufficient historical data, we ran-
domly select 90 percent of labeled instances from the target
to train defect predictors, and predict the label of the remain-
ing 10 percent instances in that target.

To graphically visualize the prediction results across
multiple runs, we use the compact boxplot to display the
median, first and third quartiles of the g-measure and AUC
values across 28 target projects similar to Menzies et al. [2]
and D’Ambros et al. [40]. The bar indicates the first-third
quartile range and circle denotes the median. The minimal
and maximal values are not displayed.

Fig. 5. Scott-Knott ESD test for all methods in terms of g-measure. The
lower the rank value is, the better the performance is.

Fig. 6. Scott-Knott ESD test for all methods in terms of AUC. The lower
the rank value is, the better the performance is.

Fig. 7. The IPR results with query sizes 2 and 4 on 28 projects of CLIFF
+MORPH and SRDO.

Fig. 8. Boxplot of the g-measure values for different percentages of train-
ing target data.

9. https://github.com/klainfo/ScottKnottESD

LI ET AL.: ON THE MULTIPLE SOURCES AND PRIVACY PRESERVATION ISSUES FOR HETEROGENEOUS DEFECT PREDICTION 405

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

https://github.com/klainfo/ScottKnottESD

Figs. 8 and 9 separately show the compact boxplots of
g-measure and AUC values across the 28 projects with differ-
ent percentages of labeled training target data. From these
figures, we can observe that the median g-measure and AUC
of MSMDA increase when the percentage of labeled train-
ing target data increases from 10 to 20 percent, and the
results are relatively stable when the percentage of labeled
training target data is in the range of [20%, 60%]. This dem-
onstrates that MSMDA almost has sufficient training data
from the target project at about 20 percent. Adding more
training data from the target project has little effect on the
performance of MSMDA.

In Figs. 8 and 9, the red lines separately represent the
median g-measure and AUC of WPDP using 90 percent
within-project data. Their corresponding values are 0.692
and 0.728, respectively. We can see that, by using only
10 percent of labeled target data, MSMDA has obtained
similar results as WPDP (using 90 percent training data).
Our finding is consistent with previous CPDP studies
[35], [36], [38]. These studies indicate that their models
trained by using limited labeled instances from a target
can produce comparable result to WPDP with sufficient
training data. Therefore, in practice, it is worthwhile to
use MSMDA for companies to conduct early defect pre-
diction when there doesn’t exist sufficient historical
defect data.

6.3 Effect of Training Target Data for Baselines

In experiments, MSMDA utilizes the 10 percent training tar-
get data, while the compared methods NN-filter, TCA+,
CPDP-IFS, CCA+, HDP-KS and SC don’t make use of this
part of data. To investigate the effect of the 10 percent train-
ing target data to the performance of the compared meth-
ods, we divide instances belonging to each of the target
project into two sets: 10 and 90 percent. Then the same
10 percent of labeled instances in the target are used for

training by all these methods and our approach, and the
remaining 90 percent instances are used for testing. That is,
we incorporate the 10 percent of labeled instances into the
training sets for these compared methods. We call NN-filter,
TCA+, CPDP-IFS, CCA+, HDP-KS and SC using the 10 per-
cent of labeled instances in a target as NN-filter*, TCA+*,
CPDP-IFS*, CCA+*, HDP-KS* and SC* (here, SC* denotes to
cluster all the instances in the target), respectively.

Figs. 10 and 11 show the compact boxplots of median
g-measure and AUC for our approach and these compared
methods. Table 11 shows the detailed median g-measure and
AUC values of NN-filter*, TCA+*, CPDP-IFS*, CCA+*,
HDP-KS* and SC*. As can be seen from Figs. 10 and 11 as
well as Table 11, both the median g-measure and AUC values
of NN-filter*, TCA+*, CPDP-IFS*, CCA+* and HDP-KS* are
slightly increased, while the SC* is almost the same. How-
ever, their g-measure and AUC values are still lower than
those of MSMDA.

Fig. 10. Boxplot of the g-measure values for compared methods with and
without training target data.

Fig. 11. Boxplot of the AUC values for compared methods with and with-
out labeled training target data.

Fig. 9. Boxplot of the AUC values for different percentages of training tar-
get data.

TABLE 11
Median g-Measure and AUC Values of Our Approach Compared
with NN-filter*, TCA+*, CPDP-IFS*, CCA+*, HDP-KS* and SC*

Method g-measure AUC

NN-filter* 0.615 0.641
TCA+* 0.626 0.652
CPDP-IFS* 0.601 0.628
CCA+* 0.633 0.697
HDP-KS* 0.628 0.711
SC* 0.642 0.675
sMDA 0.648 0.726
MSMDA 0.670 0.748

Fig. 12. The prediction results of MA and MSMDA across 28 target
projects.

406 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 4, APRIL 2019

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

6.4 Effect of Multi-Source Selection Based Manifold
Discriminant Alignment

In this experiment, we evaluate the effect of proposed
MSMDA approach. To this end, we compare the results of
MSMDA and the related manifold alignment method [77].
Fig. 12 shows the median g-measure and AUC values of
MSMDA and MA across the 28 target projects. We can find
that our MSMDA approach achieves higher results than
MA in terms of both the g-measure and AUC values.

The reasons are that: (1) MA does not select the proper
sources for the target. In practice, there exist large distribu-
tion differences between some sources and the target project,
which will bring negative influence to the learned prediction
model. However, MSMDA aims to select the sources that are
similar to the target, such that MSMDA can learn more bene-
ficial knowledge for target. (2) MA does not consider reduc-
ing the data discrepancy between each source project and
unlabeled instances in the target explicitly, while MSMDA
designs a source-target discrepancy reducing term (Fred) in
Eq. (4), which is used to reduce the distribution differences
between each source and target projects.

6.5 Effect of Different Classifiers

In this section, we evaluate the effect of different classifiers
to the prediction performance of MSMDA. To this end, we
compare the performance of MSMDA with default LR clas-
sifier and other five classifiers including k nearest neighbor
(KNN), naive Bayes (NB), support vector machine (SVM),
classification tree (CT) and random forest (RF). The imple-
mentations of these five classification techniques are pro-
vided by Matlab Statistics and Machine Learning Toolbox
with default parameter settings.10

To statistically analyze the experimental results using dif-
ferent classifiers, we conduct the non-parametric Friedman
test with the Nemenyi’s post-hoc test at a confidence level of
95 percent when comparing multiple classifiers over the
28 projects [91]. This test has been used in the defect predic-
tion studies [40], [80], [83]. The Friedman test compares
whether the average ranks are statistically significant. The

Nemenyi’s post-hoc test aims to check if the performance of
each pair classifiers is significantly different. The statistical
test is performed on the detailed results (100 random run-
ning). Then we report the visual representation results.
Figs. 13 and 14 graphically visualize the comparison results of
the Nemenyi’s post-hoc test after Friedman test on g-measure
andAUC, respectively. Classifiers that are not statistically sig-
nificant are connected. From these figures, we can observe
MSMDA generally achieves the best prediction results with
LR classifier as compared with other classifiers in terms of
g-measure andAUC values.

Prior works [6], [84], [85] point out that Nemenyi’s post-
hoc test produces overlapping groups of classification tech-
niques. It implies that there exists no statistically significant
difference among the defect prediction models built using
multiple different classification techniques. To overcome
the confounding issue of overlapping groups, we use the
Scott-Knott ESD test [6], [85], [95] to rank multiple different
classifiers. Similar to Section 5.2.3, we perform a double
Scott-Knott ESD test. Figs. 15 and 16 show the comparison
results of the Scott-Knott ESD test on g-measure and AUC
across 28 target projects with six different classifiers. The
results demonstrate that LR statistically significantly per-
forms better than the other classifiers. Thus, the use of dif-
ferent choices of the statistical test produces different
ranking of classification techniques.

6.6 Practical Guidelines for HDP

Prediction of software defects works well within the same
project as long as sufficient historical defect data is available
for training the prediction model [28], [29]. Therefore, for a
target project, if there is sufficient historical data, the soft-
ware engineers can employ the WPDP methods to conduct
defect prediction. However, there might not be enough his-
torical data for a new software project or a new company. In
practice, there usually exists plenty of data from other

Fig. 15. Comparison of all classifiers against each other with Scott-Knott
ESD test in terms of g-measure. The lower the rank value is, the better
the performance is.

Fig. 16. Comparison of all classifiers against each other with Scott-Knott
ESD test in terms of AUC. The lower the rank value is, the better the per-
formance is.

Fig. 13. Comparison of all classifiers against each other with Nemenyi’s
post-hoc test in g-measure. Groups of classifiers that are not signifi-
cantly different (at p=0.05) are connected.

Fig. 14. Comparison of all classifiers against each other with Nemenyi’s
post-hoc test in AUC. Groups of classifiers that are not significantly dif-
ferent (at p=0.05) are connected.

10. Version R2014a, http://mathworks.com/help/stats/index.html

LI ET AL.: ON THE MULTIPLE SOURCES AND PRIVACY PRESERVATION ISSUES FOR HETEROGENEOUS DEFECT PREDICTION 407

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

http://mathworks.com/help/stats/index.html

companies or organizations. If these external data has the
same metric sets with the target project, software engineers
can conduct CPDP by using the recently proposed CPDP
methods [29], [32], [34], [36], [37], [38]. The above CPDP
methods may not be feasible when the metric sets of exter-
nal data and target are heterogeneous. In this case, the
recently proposed HDP methods [41], [42] can be employed.

Before software engineers use these CPDP or HDP meth-
ods, they need to collect the external data. However, due to
privacy concerns of data owners, it’s not an easy task to obtain
defect data from data owners. To facilitate data sharing, the
data owners can adopt our privacy-preserving algorithm
SRDO to protect the privacy before they release their data.

In the early phases of software development, there usu-
ally exists a limited amount of historical data in projects. If
the limited amount of historical data can be used for train-
ing together with multiple external projects, the learned pre-
diction model will have more favorable prediction ability.
Therefore, the software engineers can use our MSMDA
approach to build effective prediction models in the early
phase. When enough historical data is collected, the soft-
ware engineers can also employ the WPDP methods to learn
the defect predictors.

In Section 5, we conduct extensive and large-scale experi-
ments on 28 projects with heterogeneous metric sets from
five groups. Experimental results show that MSMDA out-
performs the typical CPDP methods (NN-filter and TCA+),
the distribution characteristic based method CPDP-IFS, the
state-of-the-art HDP methods (CCA+ and HDP-KS), the
spectral clustering method SC, the multi-source instance
transfer method MultiSourceTrAdaBoost, the hybrid model
reconstruction CPDP method HYDRA and WPDP. The Wil-
coxon ranksum statistical test, the Cliff’s delta effect size
test and the Scott-Knott ESD test also validate this conclu-
sion. Therefore, we suggest utilization of MSMDA at the
early stages of software development activities.

6.7 Threats to Validity

Followings are several potential threats to the validity with
respect to our empirical study.

(1) Generalizability bias. Prior work [96] points out that
researchers should experiment with a broader selection of
datasets and metrics in order to maximize external validity.
Thus, we chose 28 projects from five groups that are widely
used in papers published in top software engineering ven-
ues [7], [29], [34], [40], [41], [42], [60], [82]. These projects
come from both proprietary (NASA and SOFTLAB) and
open-source (ReLink, AEEEM and PROMISE) data sets.
Therefore, our findings might not be generalizable to other
closed software projects. In the future, we will plan to
reduce this bias by conducting further experiments on more
defect data from open source and commercial systems.

(2) Comparison bias. This paper focuses on the software
defect prediction. In terms of the privacy-preserving algo-
rithm, we compare SRDO against CLIFF+MORPH, which is
a well-known privatization method for CPDP. As to more
other privacy methods in the software engineering field,
experiments might need to be done to evaluate our
approach and this is a subject for future work. With respect
to the related compared methods for HDP, we carefully
implement the NN-filter, TCA+, CPDP-IFS, HDP-KS, SC,

MultiSourceTrAdaBoost and HYDRA methods by follow-
ing the corresponding papers. However, our implementa-
tion may not be exactly the same as the original methods,
leading to that there could be a bias in the comparison
between our approach and these methods. Recent works [97]
and [85] point out that classification techniques with default
parameter settings have a large impact on the performance
of defect prediction models, which usually leads to subopti-
mal prediction results. Thus, the parameter settings of the
classification techniques should be carefully tuned. Based
on the findings of [97] and [85], there is a bias in the compar-
ison between different classifiers with the default parameter
settings. In future work, we plan to tune the parameters of
the classifiers to further improve the defect prediction
performance.

(3) Sampling bias. Since the privacy-preserving algo-
rithm SRDO has a randomness to create different obfusca-
tion instances, we mitigate this potential bias with 10 runs
of the experiment for SRDO. In addition, to construct a
training target data, we randomly select 10 percent of the
instances in a target project, and we mitigate this potential
bias with 10 runs of the experiment.

(4) Evaluation bias. This paper uses one measure of pri-
vacy (i.e., IPR), which is the same as prior works [60], [61].
Other privacy measures used in software engineering are
not reported. Regarding the privatized project, we measure
its utility empirically with defect prediction. We employ
two comprehensive measures g-measure and AUC, both of
them have been widely used to evaluate the effectiveness of
defect prediction [33], [36], [37], [42], [51], [58], [60], [61],
[83], [84], [85]. Measuring privacy and utility with other
measures is left for future work.

7 CONCLUSION

Heterogeneous defect prediction is very promising as it per-
mits potentially all heterogeneous data of software projects
to be used for defect prediction on new projects or projects
lacking in sufficient defect data. To support HDP, we pro-
vide a new privatization algorithm named sparse represen-
tation based data obfuscation (SRDO). With SRDO, data
from other software development organizations can be pri-
vatized, which facilitates data sharing. To make full use of
the information contained in multiple source projects, we
propose a multi-source heterogeneous defect prediction
approach, i.e., MSMDA. Extensive and large-scale experi-
ments are conducted on the 28 projects from five groups. The
non-parametric Wilcoxon ranksum statistical test, Cliff’s
delta effect size test and Scott-Knott ESD test are employed
for the evaluation. Experimental results show the effective-
ness of the privatization algorithm SRDO and the multi-
source heterogeneous defect prediction approach MSMDA.
Compared to a range of baseline methods, MSMDA can
achieve the improvement with 3:4-15:3 percent g-measure
and 3:0-19:1 percent AUC. Furthermore, SRDO achieves
comparable privacy and better utility values than the CLIFF
+MORPH method. The improved defect prediction perfor-
mance with our approach is beneficial to allocating limited
human and time resources effectively in software quality
assurance activities.

408 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 4, APRIL 2019

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

In the future, we plan to evaluate our approach with data
from more software projects. Additionally, in software
defect datasets, there intrinsically exist class imbalance
problem [49], [98], [99], [100], [101], which could affect the
prediction performance of learned models.

We provide the datasets and the source code of the pro-
posed approach that are used to conduct this study at
https://sites.google.com/site/mssmdav/.

ACKNOWLEDGMENTS

The authors would like to thank the editors and anonymous
reviewers for their constructive comments and suggestions.
Thisworkwas supported by theNSFC-Key Project of General
Technology Fundamental Research United Fund under Grant
No. U1736211, the National Key Research and Development
Program of China under Grant No. 2017YFB0202001, the
National Nature Science Foundation of China under Grant
Nos. 61373038, 61672392, 61472178, 61672208, U1404618,
41571417, the Science and Technology Program in Henan
province under Grant No.1721102410064, the Science and
Technique Development Program of Henan under Grant
No.172102210186, the Province-School-Region Project of
Henan University under Grant No.2016S11, and Research
Foundation ofHenanUniversityNo.2015YBZR024.

REFERENCES

[1] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A sys-
tematic literature review on fault prediction performance in soft-
ware engineering,” IEEE Trans. Softw. Eng., vol. 38, no. 6,
pp. 1276–1304, Nov./Dec. 2012.

[2] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and
A. Bener, “Defect prediction from static code features: Current
results, limitations, new approaches,” Automated Softw. Eng.,
vol. 17, no. 4, pp. 375–407, 2010.

[3] A. Tosun, A. Bener, B. Turhan, and T. Menzies, “Practical consid-
erations in deploying statistical methods for defect prediction: A
case study within the turkish telecommunications industry,” Inf.
Softw. Technol., vol. 52, no. 11, pp. 1242–1257, 2010.

[4] T. Menzies, et al., “Local versus global lessons for defect predic-
tion and effort estimation,” IEEE Trans. Softw. Eng., vol. 39, no. 6,
pp. 822–834, Jun. 2013.

[5] M. Shepperd, D. Bowes, and T. Hall, “Researcher bias: The use of
machine learning in software defect prediction,” IEEE Trans.
Softw. Eng., vol. 40, no. 6, pp. 603–616, Jun. 2014.

[6] C. Tantithamthavorn, S.McIntosh, A. E.Hassan, andK.Matsumoto,
“An empirical comparison ofmodel validation techniques for defect
prediction models,” IEEE Trans. Softw. Eng., vol. 43, no. 1, pp. 1–18,
Jan. 2017.

[7] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Trans. Softw. Eng.,
vol. 33, no. 1, pp. 2–13, Jan. 2007.

[8] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying software
changes: Clean or buggy?” IEEE Trans. Softw. Eng., vol. 34, no. 2,
pp. 181–196, Mar./Apr. 2008.

[9] K. O. Elish and M. O. Elish, “Predicting defect-prone software
modules using support vector machines,” J. Syst. Softw., vol. 81,
no. 5, pp. 649–660, 2008.

[10] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, “Dictionary
learning based software defect prediction,” in Proc. 36th Int.
Conf. Softw. Eng., 2014, pp. 414–423.

[11] X.-Y. Jing, Z.-W. Zhang, S. Ying, F. Wang, and Y.-P. Zhu,
“Software defect prediction based on collaborative representa-
tion classification,” in Proc. 36th Int. Conf. Softw. Eng., 2014,
pp. 632–633.

[12] T. Wang, Z. Zhang, X.-Y. Jing, and L. Zhang, “Multiple kernel
ensemble learning for software defect prediction,” Automated
Softw. Eng., vol. 23, no. 4, pp. 569–590, 2016.

[13] Z. Zhang, X.-Y. Jing, and T. Wang, “Label propagation based
semi-supervised learning for software defect prediction,” Auto-
mated Softw. Eng., vol. 24, no. 1, pp. 47–69, 2017.

[14] X. S. Si, C. H. Hu, and Z. J. Zhou, “Fault prediction model based
on evidential reasoning approach,” Sci. China Inf. Sci., vol. 53,
no. 10, pp. 2032–2046, 2010.

[15] N. Nagappan and T. Ball, “Use of relative code churn measures
to predict system defect density,” in Proc. 27th Int. Conf. Softw.
Eng., 2005, pp. 284–292.

[16] T. Zimmermann and N. Nagappan, “Predicting defects using
network analysis on dependency graphs,” in Proc. 30th Int. Conf.
Softw. Eng., 2008, pp. 531–540.

[17] A. E. Hassan, “Predicting faults using the complexity of code
changes,” in Proc. 31st Int. Conf. Softw. Eng., 2009, pp. 78–88.

[18] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and
B. Murphy, “Change bursts as defect predictors,” in Proc. IEEE
21st Int. Symp. Softw. Rel. Eng., 2010, pp. 309–318.

[19] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in
Proc. 28th IEEE/ACM Int. Conf. Automated Softw. Eng., 2013,
pp. 279–289.

[20] L. Chen, et al., “Empirical analysis of network measures for pre-
dicting high severity software faults,” Sci. China Inf. Sci., vol. 59,
no. 12, pp. 1–18, 2016.

[21] Y. M. Zhou, et al., “An in-depth investigation into the relation-
ships between structural metrics and unit testability in object-
oriented systems,” Sci. China Inf. Sci., vol. 55, no. 12, pp. 2800–
2815, 2012.

[22] T. Lee, J. Nam, D. Han, S. Kim, and H. In, “Developer micro
interaction metrics for software defect prediction,” IEEE Trans.
Softw. Eng., vol. 42, no. 11, pp. 1015–1035, Nov. 2016.

[23] L. C. Briand, W. L. Melo, and J. Wust, “Assessing the applicabil-
ity of fault-proneness models across object-oriented software
projects,” IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 706–720,
Jul. 2002.

[24] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller,
“Predicting faults from cached history,” in Proc. 29th Int. Conf.
Softw. Eng., 2007, pp. 489–498.

[25] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim, “Reducing fea-
tures to improve code change-based bug prediction,” IEEE Trans.
Softw. Eng., vol. 39, no. 4, pp. 552–569, Apr. 2013.

[26] Y. Kamei, et al., “A large-scale empirical study of just-in-time
quality assurance,” IEEE Trans. Softw. Eng., vol. 39, no. 6,
pp. 757–773, Jun. 2013.

[27] T. Wang, Z. Zhang, X.-Y. Jing, and Y. Liu, “Nonnegative sparse-
based semiboost for software defect prediction,” Softw. Testing
Verification Rel., vol. 26, no. 7, pp. 498–515, 2016.

[28] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: A large scale experiment on data
versus domain versus process,” in Proc. 7th Joint Meet. Eur. Softw.
Eng. Conf. ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2009, pp.
91–100.

[29] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano , “On the rel-
ative value of cross-company and within-company data for
defect prediction,” Empirical Softw. Eng., vol. 14, no. 5, pp. 540–
578, 2009.

[30] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation on
the feasibility of cross-project defect prediction,” Automated
Softw. Eng., vol. 19, no. 2, pp. 167–199, 2012.

[31] M. Li, H. Zhang, R. Wu, and Z. H. Zhou, “Sample-based software
defect prediction with active and semi-supervised learning,”
Automated Softw. Eng., vol. 19, no. 2, pp. 201–230, 2012.

[32] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for
cross-company software defect prediction,” Inf. Softw. Technol.,
vol. 54, no. 3, pp. 248–256, 2012.

[33] F. Peters, T. Menzies, and A. Marcus, “Better cross company
defect prediction,” in Proc. 10th Work. Conf. Mining Softw. Reposi-
tories, 2013, pp. 409–418.

[34] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proc.
35th Int. Conf. Softw. Eng., 2013, pp. 382–391.

[35] B. Turhan, A. T. Mısırlı, and A. Bener, “Empirical evaluation of
the effects of mixed project data on learning defect predictors,”
Inf. Softw. Technol., vol. 55, no. 6, pp. 1101–1118, 2013.

[36] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Negative samples
reduction in cross-company software defects prediction,” Inf.
Softw. Technol., vol. 62, pp. 67–77, 2015.

LI ET AL.: ON THE MULTIPLE SOURCES AND PRIVACY PRESERVATION ISSUES FOR HETEROGENEOUS DEFECT PREDICTION 409

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

https://sites.google.com/site/mssmdav/

[37] D. Ryu, O. Choi, and J. Baik, “Value-cognitive boosting with a
support vector machine for cross-project defect prediction,”
Empirical Softw. Eng., vol. 21, no. 1, pp. 43–71, 2016.

[38] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang, “HYDRA:
Massively compositional model for cross-project defect
prediction,” IEEE Trans. Softw. Eng., vol. 42, no. 10, pp. 977–998,
Oct. 2016.

[39] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some
comments on the NASA software defect datasets,” IEEE Trans.
Softw. Eng., vol. 39, no. 9, pp. 1208–1215, Sep. 2013.

[40] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect pre-
diction approaches: A benchmark and an extensive comparison,”
Empirical Softw. Eng., vol. 17, no. 4/5, pp. 531–577, 2012.

[41] X.-Y. Jing, F.Wu, X. Dong, F. Qi, and B. Xu, “Heterogeneous cross-
company defect prediction by unified metric representation and
CCA-based transfer learning,” in Proc. 10th Joint Meet. Found.
Softw. Eng., 2015, pp. 496–507.

[42] J. Nam and S. Kim, “Heterogeneous defect prediction,” in Proc.
10th Joint Meet. Found. Softw. Eng., 2015, pp. 508–519.

[43] P. He, B. Li, and Y. Ma, “Towards cross-project defect prediction
with imbalanced feature sets,” CoRR, 2014. [Online]. Available:
http://arxiv.org/abs/1411.4228

[44] M. Cheng, G. Wu, M. Jiang, H. Wan, G. You, and M. Yuan,
“Heterogeneous defect prediction via exploiting correlation sub-
space,” in Proc. 28th Int. Conf. Softw. Eng. Knowl. Eng., 2016,
pp. 171–176.

[45] M. Jureczko and L. Madeyski, “Towards identifying software
project clusters with regard to defect prediction,” in Proc. 6th Int.
Conf. Predictive Models Softw. Eng., 2010, pp. 1–10.

[46] A. Panichella, R. Oliveto, and A. De Lucia, “Cross-project defect
prediction models: L’Union fait la force,” in Proc. Softw. Evolution
Week - IEEE Conf. Softw. Maintenance Reengineering Reverse Eng.,
2014, pp. 164–173.

[47] D. Ryu, J.-I. Jang, and J. Baik, “A transfer cost-sensitive boosting
approach for cross-project defect prediction,” Softw. Quality J.,
vol. 25, no. 1, pp. 235–272, 2017.

[48] G. Canfora, A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella,
and S. Panichella, “Defect prediction as a multiobjective optimi-
zation problem,” Softw. Testing Verification Rel., vol. 25, no. 4,
pp. 426–459, 2015.

[49] X.-Y. Jing, F. Wu, X. Dong, and B. Xu, “An improved SDA based
defect prediction framework for both within-project and cross-
project class-imbalance problems,” IEEE Trans. Softw. Eng.,
vol. 43, no. 4, pp. 321–339, Apr. 2017.

[50] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” in Proc. 38th Int. Conf. Softw. Eng.,
2016, pp. 297–308.

[51] F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan, “Cross-project
defect prediction using a connectivity-based unsupervised classi-
fier,” in Proc. 38th Int. Conf. Softw. Eng., 2016, pp. 309–320.

[52] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning from open-
source projects: An empirical study on defect prediction,” in Proc.
ACM / IEEE Int. Symp. Empirical Softw. Eng.Meas., 2013, pp. 45–54.

[53] S. Herbold, “Training data selection for cross-project defect pre-
diction,” in Proc. 9th Int. Conf. Predictive Models Softw. Eng., 2013,
pp. 6–15.

[54] S. Watanabe, H. Kaiya, and K. Kaijiri, “Adapting a fault predic-
tion model to allow inter languagereuse,” in Proc. 4th Int. Work-
shop Predictor Models Softw. Eng., 2008, pp. 19–24.

[55] X. Xia, D. Lo, S. McIntosh, E. Shihab, and A. E. Hassan, “Cross-
project build co-change prediction,” in Proc. 22nd IEEE Int. Conf.
Softw. Anal. Evolution Reengineering, 2015, pp. 311–320.

[56] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the impreci-
sion of cross-project defect prediction,” in Proc. ACM SIGSOFT
20th Int. Symp. Found. Softw. Eng., 2012, pp. 1–11.

[57] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi,
and A. E. Hassan, “Studying just-in-time defect prediction using
cross-project models,” Empirical Softw. Eng., vol. 21, no. 5,
pp. 2072–2106, 2016.

[58] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards build-
ing a universal defect prediction model with rank transformed
predictors,” Empirical Softw. Eng., vol. 21, no. 5, pp. 1–39, 2016.

[59] F. Peters and T. Menzies, “Privacy and utility for defect predic-
tion: Experiments with MORPH,” in Proc. 34th Int. Conf. Softw.
Eng., 2012, pp. 189–199.

[60] F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy
and utility in cross-company defect prediction,” IEEE Trans.
Softw. Eng., vol. 39, no. 8, pp. 1054–1068, Aug. 2013.

[61] F. Peters, T. Menzies, and L. Layman, “LACE2: Better privacy-
preserving data sharing for cross project defect prediction,” in
Proc. 37th Int. Conf. Softw. Eng., 2015, pp. 801–811.

[62] K. Taneja, M. Grechanik, R. Ghani, and T. Xie, “Testing software
in age of data privacy: A balancing act,” in Proc. 19th ACM SIG-
SOFT Symp. 13th Eur. Conf. Found. Softw. Eng., 2011, pp. 201–211.

[63] B. Li, M. Grechanik, and D. Poshyvanyk, “Sanitizing and mini-
mizing databases for software application test outsourcing,” in
Proc. IEEE 7th Int. Conf. Softw. Testing Verification Validation, 2014,
pp. 233–242.

[64] M. Castro, M. Costa, and J.-P. Martin, “Better bug reporting with
better privacy,” in Proc. 13th Int. Conf. Archit. Support Program.
Languages Operating Syst., 2008, pp. 319–328.

[65] J. Clause and A. Orso, “Camouflage: Automated anonymization
of field data,” in Proc. 33rd Int. Conf. Softw. Eng., 2011, pp. 21–30.

[66] A. Budi, D. Lo, L. Jiang, and Lucia, “kb-anonymity: A model for
anonymized behaviour-preserving test and debugging data,” in
Proc. 32nd ACM SIGPLAN Conf. Program. Language Des. Implemen-
tation, 2011, pp. 447–457.

[67] F. Qi, X.-Y. Jing, X. Zhu, F. Wu, and L. Cheng, “Privacy preserv-
ing via interval covering based subclass division and manifold
learning based bi-directional obfuscation for effort estimation,”
in Proc. 31st IEEE/ACM Int. Conf. Automated Softw. Eng., 2016,
pp. 75–86.

[68] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification.
Hoboken, NJ, USA: Wiley, 2012.

[69] D. R. Wilson and T. R. Martinez, “Improved heterogeneous dis-
tance functions,” J. Artif. Intell. Res., vol. 6, no. 1, pp. 1–34, 2000.

[70] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in
defect prediction,” in Proc. 33rd Int. Conf. Softw. Eng., 2011,
pp. 481–490.

[71] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and
K. Matsumoto, “The impact of mislabelling on the performance
and interpretation of defect prediction models,” in Proc. 37th
IEEE/ACM Int. Conf. Softw. Eng., 2015, pp. 812–823.

[72] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust
face recognition via sparse representation,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[73] S. J. Kim, K. Koh, M. Lustig, and S. Boyd, “An interior-point
method for large-scale L1-regularized least squares,” IEEE J. Sel.
Topics Signal Process., vol. 1, no. 4, pp. 606–617, Dec. 2007.

[74] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Visual domain
adaptation: A survey of recent advances,” IEEE Signal Process.
Mag., vol. 32, no. 3, pp. 53–69, May 2015.

[75] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[76] K. Weiss, T. M. Khoshgoftaar, and D. D. Wang, “A survey of
transfer learning,” J. Big Data, vol. 3, no. 1, pp. 1–40, 2016.

[77] C. Wang and S. Mahadevan, “Heterogeneous domain adaptation
using manifold alignment,” in Proc. 22nd Int. Joint Conf. Artif.
Intell., 2011, pp. 1541–1546.

[78] D. Tuia, M. Volpi, M. Trolliet, and G. Camps-Valls,
“Semisupervised manifold alignment of multimodal remote
sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 12,
pp. 7708–7720, Dec. 2014.

[79] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed.
Baltimore, MD, USA: The Johns Hopkins Univ. Press, 1996.

[80] J. Nam and S. Kim, “CLAMI: Defect prediction on unlabeled
datasets,” in Proc. 30th IEEE/ACM Int. Conf. Automated Softw.
Eng., 2015, pp. 1–12.

[81] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” J. Mach.
Learn. Res., vol. 9, no. 9, pp. 1871–1874, 2008.

[82] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “ReLink: Recovering
links between bugs and changes,” in Proc. 19th ACM SIGSOFT
Symp. Found. Softw. Eng. 13th Eur. Softw. Eng. Conf., 2011, pp. 15–25.

[83] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings,” IEEE Trans. Softw. Eng., vol. 34,
no. 4, pp. 485–496, Jul./Aug. 2008.

[84] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact
of classification techniques on the performance of defect predic-
tion models,” in Proc. 37th IEEE/ACM Int. Conf. Softw. Eng., 2015,
pp. 789–800.

[85] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and
K. Matsumoto, “Automated parameter optimization of classifica-
tion techniques for defect prediction models,” in Proc. 38th Int.
Conf. Softw. Eng., 2016, pp. 321–332.

410 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 4, APRIL 2019

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

http://arxiv.org/abs/1411.4228

[86] Y. Jiang, B. Cukic, and Y. Ma, “Techniques for evaluating fault
prediction models,” Empirical Softw. Eng., vol. 13, no. 5, pp. 561–
595, 2008.

[87] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald,
“Problems with precision: A response to “comments on ‘data
mining static code attributes to learn defect predictors”’,” IEEE
Trans. Softw. Eng., vol. 33, no. 9, pp. 637–640, Sep. 2007.

[88] Y. Yao and G. Doretto, “Boosting for transfer learning with mul-
tiple sources,” in Proc. 23rd IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2010, pp. 1855–1862.

[89] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing
software metrics for defect prediction: An investigation on fea-
ture selection techniques,” Softw. Practice Experience, vol. 41,
no. 5, pp. 579–606, 2011.

[90] M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods.
Hoboken, NJ, USA: Wiley, 1999.

[91] J. Dem�sar, “Statistical comparisons of classifiers over multiple
data sets,” J. Mach. Learn. Res., vol. 7, no. 1, pp. 1–30, 2006.

[92] N. Cliff, Ordinal Methods for Behavioral Data Analysis. East Sussex,
U.K.: Psychology Press, 2014.

[93] W. Fu and T. Menzies, “Revisiting unsupervised learning for
defect prediction,” in Proc. 11th Joint Meet. Found. Softw. Eng.,
2017, pp. 72–83.

[94] Y. Yang, et al., “Effort-aware just-in-time defect prediction: Sim-
ple unsupervised models could be better than supervised mod-
els,” in Proc. 24th ACM SIGSOFT Int. Symp. Found. Softw. Eng.,
2016, pp. 157–168.

[95] C. Tantithamthavorn, “ScottKnottESD: The Scott-Knott effect
size difference (ESD) test (version-2.02),” 2017. [Online]. Avail-
able: https://cran.r-project.org/web/packages/ScottKnottESD/
index.html

[96] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and
K. Matsumoto, “Comments on “researcher bias: The use of
machine learning in software defect prediction”,” IEEE Trans.
Softw. Eng., vol. 42, no. 11, pp. 1092–1094, Nov. 2016.

[97] W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is
it really necessary?” Inf. Softw. Technol., vol. 76, pp. 135–146, 2016.

[98] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect predic-
tion for imbalanced data,” in Proc. 37th IEEE/ACM Int. Conf.
Softw. Eng., 2015, pp. 99–108.

[99] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[100] S. Wang and X. Yao, “Using class imbalance learning for soft-
ware defect prediction,” IEEE Trans. Rel., vol. 62, no. 2, pp. 434–
443, Jun. 2013.

[101] H. Zhang and X. Zhang, “Comments on “data mining static code
attributes to learn defect predictors”,” IEEE Trans. Softw. Eng.,
vol. 33, no. 9, pp. 635–637, Sep. 2007.

Zhiqiang Li is working toward the PhD degree in
the State Key Laboratory of Software Engineer-
ing, School of Computer, Wuhan University. His
research interests include software engineering
and machine learning.

Xiao-Yuan Jing is now a professor in the State
Key Laboratory of Software Engineering, School
of Computer, Wuhan University, and in the Col-
lege of Automation, Nanjing University of Posts
and Telecommunications, China. He has pub-
lished more than 70 papers in the international
journals and conferences like the IEEE Transac-
tions on Software Engineering (TSE), the Auto-
mated Software Engineering (ASE), the IEEE
Transactions on Image Processing (TIP), Int.
Conf. Software Engineering (ICSE), ACM Symp.

Foundations of Software Engineering (FSE), Int. Conf. on Automated
Software Engineering (ASE), Int. Joint Conf. Artificial Intelligence (IJCAI),
and AAAI Conf. Artificial Intelligence (AAAI). His main research interests
include software engineering, program analysis, machine learning, and
artificial intelligence.

Xiaoke Zhu received the PhD degree in pattern
recognition and intelligence system from the
Wuhan University, Wuhan, China, in 2017. He is
currently an associate professor in the School of
Computer and Information Engineering, Henan
University, China. His current research interests
include person re-identification, image classifica-
tion, and software engineering.

Hongyu Zhang received the PhD degree from
National University of Singapore, in 2003. He is an
associate professor with the University of
Newcastle, Australia. Previously, he was a lead
researcher at Microsoft Research Asia, an associ-
ate professor with Tsinghua University, China,
and a lecturer with RMIT University, Australia. His
research is in the area of software engineering, in
particular, software analytics, testing, mainte-
nance, metrics, and reuse. The main theme of his
research is to improve software quality and pro-

ductivity by mining and analyzing software data. He has published more
than 100 Research Papers in international journals and conferences,
including the IEEE Transactions on Software Engineering, the ACM
Transactions on Software Engineering and Methodology, ICSE, FSE,
ASE, ISSTA, POPL, AAAI, ICSM, ICDM, and USENIX ATC. He received
two ACM Distinguished Paper awards. He has also served as a program
committeemember for many software engineering conferences.

Baowen Xu is now a professor and dean in the
State Key Laboratory of Software Engineering,
School of Computer,WuhanUniversity, and a pro-
fessor in the Department of Computer Science
and Technology, Nanjing University. He has pub-
lished more than 200 papers in the international
journals and conferences like the ACM Transac-
tions on Software Engineering and Methodology
(TOSEM), the IEEE Transactions on Software
Engineering (TSE), the Journal of Artificial Intelli-
gence Research, Int. Conf. on Automated Soft-

ware Engineering (ASE) and Int. Joint Conf. Artificial Intelligence (IJCAI).
His main research interests include programming languages, software
testing, softwaremaintenance, and softwaremetrics.

Shi Ying is now a professor with Wuhan Univer-
sity, where he is vice dean in the Computer
School and he is also the deputy director of the
State Key Laboratory of Software Engineering.
He has authored or co-authored more than 100
referred papers in the area of software engineer-
ing. His main research interests include service-
oriented software engineering, Semantic Web
service, and trustworthy software.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LI ET AL.: ON THE MULTIPLE SOURCES AND PRIVACY PRESERVATION ISSUES FOR HETEROGENEOUS DEFECT PREDICTION 411

Authorized licensed use limited to: University of Newcastle. Downloaded on April 04,2020 at 11:11:11 UTC from IEEE Xplore. Restrictions apply.

https://cran.r-project.org/web/packages/ScottKnottESD/index.html
https://cran.r-project.org/web/packages/ScottKnottESD/index.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

