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Abstract—Online service systems have become increasingly
popular. During operation of an online service system, incidents
(unplanned interruptions or outages of the service) are inevitable.
As an initial step of incident management, it is important to be
able to automatically assign an incident report to a suitable team.
We call this step incident triage, which can significantly affect the
efficiency and accuracy of overall incident management. To better
understand the incident-triage practice in industry, we perform
an empirical study of incident triage on 20 large-scale online
service systems in Microsoft. We find that incorrect assignment
of incident reports occurs frequently and incurs unnecessary cost,
especially for the incidents with high severity. For example, about
4.11% to 91.58% of incident reports are reassigned at least once
and the average increment in incident-triage time caused by the
reassignments is up to 10.16X. Considering the similarity between
bug triage (automatically assigning bug reports to software
developers) and incident triage, we then explore the applicability
of typical bug-triage techniques to incident triage for online
service systems. The results demonstrate that these bug-triage
techniques are able to correctly assign incident reports to a
certain extent, but still need to be further improved, especially
for the incident reports that are assigned incorrectly at the first
time. We further discuss possible ways to improve the accuracy
of incident triage based on the empirical study. To our best
knowledge, we are the first to investigate incident triage in
industrial practice. Our results are useful for both practitioners
and researchers to develop methods and tools to improve the
current incident-triage practice for online service systems.

I. INTRODUCTION

Online service systems, such as Microsoft Office 365,

have become increasingly popular. Despite of various quality

control measures, during actual operation of an online ser-

vice system, there are always incidents, which are unplanned

interruptions and outages of the service [1]. These incidents

can lead to huge economic loss and serious consequences.

For example, the estimated cost of the one-hour downtime for

Amazon.com on Prime Day this year (its biggest sale event

of the year) is up to $100 million1. Also, according to a study

conducted on 63 data center organizations in the U.S., the

1 https://www.businessinsider.com/amazon-prime-day-website-issues-cos
t-it-millions-in-lost-sales-2018-7.

average cost of service downtime has steadily increased from

$505,502 in 2010 to $740,357 in 20162.

Once an incident of an online service system occurs, it needs

to be mitigated as soon as possible. The goal is to minimize the

service downtime and to ensure high quality of the provided

service. Currently, incident management has become a critical

task for online service systems. A typical procedure of incident

management is as follows. When an incident is detected by

engineers or machine-based alerts (also called monitors), a

corresponding incident report is created and submitted to the

incident management system. Then, the incident report is

assigned to the responsible team and an incident investigation

process is triggered. Given an incident report, the engineers in

the responsible team need to understand what the problem is

and then mitigate it. More details about incident management

will be presented in Section II-A.

As an initial step of incident management, it is important

to be able to automatically assign an incident report to a re-

sponsible team. We call this step incident triage3. In particular,

incident triage can significantly affect the follow-up steps and

the efficiency and accuracy of overall incident management. If

an incident report is assigned to a wrong team, the mitigation

of the incident could be delayed and more cost could be

incurred. Therefore, accurate incident triage is essential.

In the literature, there are a large number of studies on

bug triage, which focuses on the automatic assignment of

bug reports to software developers [2]–[4]. However, incident

triage for online service systems is still unexplored. As we

will show in this paper (Section IV), incident triage and bug

triage have some different characteristics, although they have

much in common. For example, bug reports are reported and

treated individually in the bug-triage context, while many

incident reports tend to have correlations, i.e., time correlation

(reported around similar time) or location correlation (reported

from close locations). One major reason is that an incident

of an online service system can lead to a series of other

2 https://www.ponemon.org/blog/2016-cost-of-data-center-outages.
3This concept is analogous to traditional bug triage.
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incidents, which can be detected by different monitors. All

these monitors can create and submit unique incident reports,

although these incidents actually have the same root cause. In

this case, the incident reports caused by the same root cause

tend to have similar reporting time or be reported from close

locations. Therefore, it is yet to be verified if the existing bug-

triage techniques can be applied to the incident-triage practice.

To better understand the incident-triage practice in industry,

we performed an empirical study of incident triage on 20 real-

world, large-scale online service systems in Microsoft, includ-

ing several widely-used Microsoft products such as Office 365,

Skype, Visual Studio, etc. In this study, we used over 30GB

incident reports4, and the total number of teams involved in

these incident reports is over 20K. Here a team refers to a

group of engineers responsible for investigating, mitigating,

and resolving incidents. There can be a large number of

teams supporting the same online service system. In the study,

we investigated the problem of incident reassignment during

the incident-triage process, which refers to reassigning an

incorrectly assigned incident report at the first time to another

potentially responsible team, and the cost associated with re-

assignment. Through the empirical study, we find that incident

reassignment occurs frequently for online service systems, i.e.,

the reassignment rate ranges from 4.11% to 91.58% for the

20 studied online service systems. The reassignment largely

incurs unnecessary cost, especially for the incidents with high

severity. For example, the average increment in incident-triage

time due to reassignment is up to 10.16X on the 20 studied

online service systems. Therefore, accurate incident triage is

definitely desired by online service systems in industry. To our

best knowledge, this is the first empirical study to investigate

incident triage in industrial practice.

Considering the similarities and differences between bug

triage and incident triage, we further investigated the effec-

tiveness of typical bug-triage techniques [2]–[8] on incident

triage for online service systems. More specifically, we eval-

uated six typical bug-triage techniques using five kinds of

technical aspects, i.e., machine-learning based techniques [9],

[10]5, deep-learning based technique [11], topic-model based

technique [12], tossing-graph based technique [3], and fuzzy-

set based technique [13], based on 10 online service systems in

Microsoft. The experimental results demonstrate that the stud-

ied bug-triage techniques are able to assign incident reports to

responsible teams to a certain extent. For example, the stud-

ied bug-triage techniques are able to accurately identify the

responsible teams for 32% – 71% incident reports. However,

the accuracy still needs to be further improved, especially for

the incident reports that are assigned incorrectly at the first

time. More specifically, the studied bug-triage techniques can

identify the responsible teams for only 17% – 52% incident

reports that are assigned incorrectly at the first time.

4Due to the policy of Microsoft, we cannot disclose the actual number of
incident reports in this paper.

5In this work, machine learning refers to traditional machine learning
algorithms.
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Fig. 1: The overview of incident management

By analyzing the studied bug-triage techniques in the indus-

trial incident-triage context, we obtain some insights that can

be used to better solve the incident-triage problem for online

service systems. For example, as a large number of incidents

are detected by monitors, we can leverage the monitoring

data to further improve incident triage, such as service-level

logs, performance counters, and machine/process/service-level

events. Also, instead of treating each incident report indi-

vidually during triage, we can leverage past incident reports

that were submitted around the similar time or from close

locations.

To sum up, this work has the following major contributions:

• We reported the first empirical study of incident triage

on real-world, large-scale online service systems.

• We conducted the first empirical evaluation of bug-triage

techniques for the incident-triage practice.

• We discussed a series of implications that can better solve

the incident-triage problem for online service systems in

practice.

The remaining sections of this paper are organized as

follows. Section II presents the empirical study to investigate

incident triage for online service systems in practice. Sec-

tion III presents the empirical evaluation of the existing bug-

triage techniques for incident triage. Section IV and Section

V discuss the implications for improving incident triage and

the threats to validity in our studies, respectively. Section VI

presents the related work and Section VII concludes our work.

II. AN EMPIRICAL STUDY ON INCIDENT TRIAGE

In this section, we report the first empirical study of incident

triage for real-world online service systems. In this study, we

used 20 online service systems in Microsoft as subjects, in-

cluding several widely-used Microsoft products such as Office

365, Skype, Visual Studio, etc. Due to the policy of Microsoft,

we only report rough data and hide the time period of these

incident reports. The total size of the incident reports for the 20

subjects used in this study is over 30GB and the total number

of teams is over 20K. To our best knowledge, this is the most

large-scale study that explores the triage problem (including

bug triage) in the literature. In the following, we first introduce

the incidents of an online service system in Section II-A, and

present the empirical investigation on incident reassignment

during the incident-triage process in Section II-B.
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A. Incidents
An online service system involves many components, such

as virtual machines, database, network, etc. All these com-

ponents can become the sources of the incidents in the daily

operation of an online service system. That is, the incidents

could be caused by many factors, such as source code bugs,

misconfigurations, network traffic, and hardware failures. To

provide 24x7 highly available service for millions of users

around the world, any unplanned incident for an online service

system is serious. Currently, incident management has become

a critical task for online service systems. In particular, Figure 1

shows the overview of incident management for an online

service system. A typical procedure of incident management

goes through four steps: incident reporting, incident triage,

incident mitigation, and incident resolution.
1) Incident Reporting: For an online service system, in-

cidents are detected by either engineers or machine-based

alerts (also called monitors). Engineers could observe incidents

during their daily operation, and then they can manually

submit the incident reports through an incident report portal.

Monitors can detect incidents by monitoring the data at the

runtime of the online service system, such as service-level

logs, performance counters, and machine/process/service-level

events. These monitoring data typically contains the informa-

tion that reflects the runtime state and behavior of the online

service system. Based on these data, incidents of the online

service system can be detected by monitors in a timely way.

Then, the monitors can automatically submit the corresponding

incident reports by rendering certain templates.
In particular, each incident has a severity level, which is set

based on its potential impact on the users. In Microsoft, there

are five types of incident severity levels, i.e., 0 – 4, where 0

represents the highest severity level and 4 represents the lowest

severity level.
2) Incident Triage: Once an incident is reported, the in-

cident management system first makes a phone call to a

set of On-Call Engineers (OCEs) to trigger the investigation

process of the incident, in order to restore the service as

soon as possible. Ideally, OCEs can identify the root cause

of the incident based on the information in the incident report

and resolve it quickly. However, mostly, OCEs are unable to

diagnose the root cause within a short time. Therefore, they

have to manually assign the incident report to a team that they

think is the most suitable to handle it. This process is called

incident triage. Sometimes, the engineers in the assigned team

may find that they are actually not responsible for the incident,

and thus they can reassign the incident report to another team

that is potentially responsible. This process is called incident
reassignment. It is not trivial to identify the correct team that

an incident report should be assigned to. Section II-B will

further explain the situation of incident triage in detail.
3) Incident Mitigation: When the incident report is as-

signed to the correct team, the incident investigation process is

triggered. That is, the engineers in the team start to investigate

what the problem is and mitigate it as soon as possible. In

a large-scale online service system, completely resolving an
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Fig. 2: Incident reassignment rate for each subject

incident tends to take quite some time that the service cannot

afford. Therefore, the best way is to first quickly mitigate

and bring the service back to normal and then do deeper

investigation later. An example of mitigation is that, if an

incident is related to SQL servers, the mitigation method may

be to reboot the abnormal SQL servers.

4) Incident Resolution: After mitigating the incident, the

engineers in the team then identify and fix the underlying root

cause for the incident through offline postmortem analysis. In

particular, all the relevant information used for resolving the

incident could be recorded for future usage. After resolving the

incident, the engineers close the incident report in the incident

management system.

B. An Empirical Investigation of Incident Reassignment

Based on the 20 online service systems in Microsoft, we

investigated the practice of incident triage from the following

two aspects:

• AAA1: What is the rate of incident reassignment?

• AAA2: What is the cost of incident reassignment?

In particular, the first aspect expects to motivate the problem

of incident triage for online service systems by exploring the

frequency of incident reassignment, and the second aspect

aims to investigate the impact of incident reassignment.

1) The Reassignment of Incident Reports: Figure 2 shows

the reassignment rate of incident reports for each subject

system. In this figure, the x-axis represents the used subjects.

The y-axis represents the reassignment rates, which is com-

puted by dividing the number of incident reports involving

reassignment by the total number of incident reports. Here we

considered three cases of reassignment, i.e., the cases in which

the number of reassignment is 1, the number of reassignment is

2, and the number of reassignment is larger than 2. The value

over each bar represents the reassignment rate (considering

all the three reassignment cases) of incident reports for the

corresponding subject. Figure 2 shows that, for the 20 subjects

(S1 to S20), the reassignment rate of incident reports ranges

from 4.11% to 91.58%. The result demonstrates that incorrect

assignments for incident reports are ubiquitous. In other words,

every subject has a non-negligible ratio of incident reports that

are assigned incorrectly at the first time. In particular, there

are five subjects for which more than 40% incident reports

have to be reassigned. Also, for some subjects such as S4,
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S7, and S18, a number of incident reports are even reassigned

several times (i.e., more than twice). These results indicate that

incident reassignment indeed frequently occurs and is quite

serious for some of the online service systems, which could

cause unnecessary delays in incident mitigation and resolution.

TABLE I: Average reassignment rate for the incident reports

of the 20 subjects at each severity level (%)

Severity 0 1 2 3 4

#reassignment=1 1.17 35.85 20.70 20.28 11.77
#reassignment=2 0.16 3.39 4.78 4.51 2.14
#reassignment>2 0.06 2.18 2.35 1.46 0.90

All 1.39 41.42 27.82 26.25 14.81

We further analyzed the average reassignment rate for the

incident reports of the 20 subjects at each severity level (level

0 to level 4). The results are shown in Table I, where each

cell represents the average reassignment rate for the incident

reports at certain severity level in the corresponding reassign-

ment case. The bold value in each row represents the largest

value of the row, referring to the largest reassignment rate

across all severity levels in the corresponding reassignment

case. From the last row in this table, we can see that except

the highest severity level (i.e., level 0), the incident reports at

higher severity levels have larger reassignment rates, indicating

that it is harder to accurately assign more severe incidents at

the first time. Since more severe incidents tend to lead to more

serious impacts, it further motivates the necessity of accurate

incident triage.

2) The Cost of Reassignment: Figure 3 shows the analysis

results about reassignment cost, i.e., the increment in incident-

triage time (in terms of multiples of time) due to reassignment.

Here the incident-triage time refers to the time from incident

reporting to the incident being assigned to the correct team.

Due to the company policy, we can only report the relative

time instead of the absolute time. In this figure, each bar

represents the average increment in incident-triage time due

to reassignment for the corresponding subject. The increment

ranges from 1.09X to 24.32X, and the average increment on

all the subjects is up to 10.16X. This result demonstrates

that reassignment could incur huge cost, showing the strong

demand for accurate incident triage.

We also analyzed the cost of reassignment for incident

reports of the 20 subjects at each severity level (level 0 to

level 4). The results are shown in Table II. In this table, each

cell represents the average increment in incident-triage time

(in terms of multiples of time) due to reassignment on all the

subjects at the corresponding severity level. The bold value

refers to the largest increment across the severity levels. From

this table, we can see that for the incident reports at the lowest

severity level (level 4), the increment is the highest (i.e., up to

27.09X). It may be still acceptable to spend relatively longer

time to assign the less severe incident reports. However, for the

rest four severity levels (level 0 to level 3), the increment at a

higher severity level is larger than that at a lower severity level.

That is, the reassignment cost tends to be more significant for
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Fig. 3: Average increment in incident-triage time (in terms of

multiples of time) caused by reassignment

more severe incidents. It is very harmful since it may prolong

the incident diagnosis time and could lead to more serious

consequences. Therefore, it is very necessary to improve the

accuracy of incident triage.

TABLE II: Average increment in incident-triage time (in terms

of multiples of time) due to reassignment on all the subjects

at each severity level

Severity 0 1 2 3 4

Multiple 15.17 11.40 7.15 7.51 27.09

In summary, by exploring the two aspects on the 20 online

service systems in Microsoft, we obtain the following two

major findings:

• Incident reassignment frequently occurs, i.e., the reas-

signment rates range from 4.11% to 91.58% for the 20

studied online service systems, and incidents at a higher

severity level tend to have a larger reassignment rate;

• Incident reassignment largely aggravates the incident-

triage cost, especially for the incidents at higher severity

levels. For example, the average increment in incident-

triage time due to reassignment is up to 10.16X on the

20 studied online service systems.

Therefore, accurate incident triage is definitely desired by

online service systems in industry.

III. AN EMPIRICAL EVALUATION OF BUG-TRIAGE

TECHNIQUES FOR INCIDENT TRIAGE

To solve the incident-triage problem for online service sys-

tems, we conducted the first empirical study to investigate how
traditional bug-triage techniques perform in this context.
In this section, we first introduce the studied typical bug-triage

techniques in our incident-triage context in Section III-A, then

present our study design in Section III-B, and finally present

the results and analysis in Section III-C.

A. Studied Bug-Triage Techniques

In the literature, a large number of bug triage techniques

have been proposed [3], [9]–[16]. According to the technical

aspects they use, we classified them into five categories.

We then selected one or two typical techniques from each

category as the representatives to evaluate the effectiveness
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on incident triage for online service systems. Table III shows

the studied techniques in this work (i.e., six techniques from

five categories in total). In this table, the second and third

columns represent the name of each studied technique called

in this paper for the ease of presentation and the technical

aspect used in the corresponding technique, respectively.

TABLE III: Studied bug-triage techniques

Work Name Technical Aspect

Anvik et al. [9] MLI machine learning (individual)
Jonsson et al. [10] MLE machine learning (ensemble)
Lee et al. [11] DL deep learning
Naguib et al. [12] TM topic model
Jeong et al. [3] TG tossing graph
Tamrawi et al. [13] FS fuzzy set

We selected these techniques based on the following criteria:

1) The information leveraged by a bug-triage technique can be

acquired in our incident-triage context. For example, summary

and description in a report can be acquired, while developers’

social network can hardly be acquired in the context since

incident triage targets at teams instead of developers; 2) The

source-code-based techniques are excluded, since besides code

bugs, incidents are caused by various other factors, such as ser-

vice unavailable and misconfigurations; 3) For each category

we selected the state-of-the-art or widely-studied techniques

as the representatives. Due to the differences between bug

triage and incident triage, we adapted the studied traditional

bug-triage techniques in our incident-triage context, e.g., using

teams to replace developers. Next, we introduce the adapted

bug-triage techniques in detail. More traditional bug-triage

techniques will be presented in Section VI-A.

1) Machine-Learning based Techniques: Machine-learning

based bug triage regards the problem as a supervised classifi-

cation problem. It uses previously resolved bug reports to train

a classifier, which is able to recommend assignments for new

bug reports. In this category, we chose two typical techniques,

i.e., MLI , which is based on an individual machine learning al-

gorithm, and MLE , which integrates several machine learning

algorithms.

MLI first transforms the text (i.e., summary and description)

in each previously resolved incident report to a feature vector

by counting the term frequency so as to apply a machine

learning algorithm. Then, MLI labels each feature vector

as the team that resolved the incident. Finally, MLI uses

Support Vector Machines (SVM) [17] to train a classifier for

recommending assignments of new incident reports.

MLE uses an ensemble learning technique to integrate

several machine learning algorithms. Following MLI , MLE

first uses each individual machine learning algorithm to train

a classifier. Then, it uses Stacked Generalization (SG) [18]

to combine the results of these classifiers for recommending

assignments of new incident reports. In particular, based on the

results in the existing work [10], we selected four machine

learning algorithms that achieve the best effectiveness to

combine, including SVM [17], Random Forest [19], Decision

Tree [20], and K-Nearest Neighbors (KNN) [21].

2) Deep-Learning based Technique: Deep-learning based

bug triage also regards the problem as a supervised classifi-

cation problem. Different from machine-learning based tech-

niques, DL first converts each word in a previously resolved

incident report (i.e., summary and description) to a vector

representation using Word2Vec [22]. In this way, the semantic

information of an incident report can be considered. Then,

DL adopts Convolutional Neural Network (CNN) [23] to train

a classifier for recommending assignments of new incident

reports.

3) Topic-Model based Technique: TM recommends teams

based on their expertise relevant to the topic of an incident

report. It first uses Latent Dirichlet allocation (LDA) [24] to

cluster previously resolved incident reports into topics based

on the summary and description of incident reports. Then, it

extracts the activities (including resolving and assigning) of

each team based on these incident reports to construct the

association between topics and teams. For a new incident

report, TM first identifies its topics, and then produces a

ranking list of recommended teams based on the constructed

association.

4) Tossing-Graph based Technique: TG aims to construct

a graph model to capture the tossing (also called reassigning)

probability between teams from the tossing history via Markov

chains. In particular, we construct the goal oriented model,
since the existing study [3] demonstrated that this model per-

forms the best. The goal oriented model encodes the relation-

ship between intermediate teams and the resolving team. Same

to the existing work [3], TG first uses Naive Bayesian [25]

to train a classifier to produce a list of recommended teams.

Then, it adjusts the list of recommended teams based on the

constructed graph model.

5) Fuzzy-Set based Technique: FS aims to model the re-

solving association between teams and technical aspects via

fuzzy sets [26]. It constructs the association based on the

technical terms in previously resolved incident reports (i.e.,

summary and description) and the past resolving activities of

teams via fuzzy sets. Based on the association, FS recommends

the teams with the highest resolving expertise for new incident

reports.

B. Study Design

1) Subjects: In this study, we selected 10 (out of 20) online

service systems in Microsoft, including several widely-used

Microsoft products (e.g., Office 365, Skype, and Visual Studio)

as subjects, to evaluate the effectiveness of these typical bug-

triage techniques for incident triage. The total number of teams

for the 10 subjects is about 9K. In particular, we used the

incident reports from the first half period as the training data to

construct the model for incident triage, and used the remaining

incident reports as the testing data to evaluate the effectiveness

of each technique based on the model.

2) Tools and Implementations: As the implementations of

the studied bug-triage techniques are unavailable, we reimple-

mented them strictly following the description of these tech-

niques in the papers. The first two authors carefully checked
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the understanding about the description of these techniques

and the implementations with each other. In particular, for

all the involved machine learning algorithms (including SVM,

Random Forest, Decision Tree, KNN, and Naive Bayesian), we

adopted the implementations provided by scikit-learn6, which

is a popular tool for data mining and data analysis in Python.

Also, the implementation of LDA used in TM is provided

by scikit-learn. For DL, we adopted the implementation of

Word2Vec provided by gensim7, and implemented CNN based

on Apache MXNet8, a scalable deep learning framework. In

particular, we used the default parameters of these provided

implementations. For the parameters to be set additionally, we

set them based on a small dataset. More specifically, the kernel

used in SVM is the linear kernel, the number of topics in

LDA is set to be 60, and the word-embedding dimension is

set to be 128. For DL, the CNN uses three sets of convolution

kernels with different sizes (i.e., 3, 4, 5), each of which has

50 channels, and the used epoch is 20.
3) Metrics: To measure the effectiveness of these studied

techniques, following the existing work [13], [27] we adopted

the widely-used metric: accuracy@n, which means that the

responsible team is identified in the top-n list of the returned

results. Here we consider n = {1, 3, 5}.

Besides, we also measure the efficiency of these studied

techniques in the incident-triage context. That is, for each

studied technique, we recorded the time spent on the phase of

training, which is to construct a model for incident triage, and

the average time spent on the phase of recommending, which is

to recommend the responsible team for a new incident report.

For the ease of presentation, we call the former training time
and the latter recommendation (or testing) time.

C. Results and Analysis

1) Effectiveness: Table IV shows the effectiveness of the

studied bug-triage techniques for all incident reports in testing

data. In this table, the last row presents the average accuracy

of each studied technique on the 10 subjects, and the bold

value for each metric in each row refers to the largest one

among these techniques. From this table, we find that all

the studied bug-triage techniques are able to assign incident

reports to corresponding teams to a certain extent, e.g., the

average accuracy@1 values of them range from 0.32 to 0.71.

On average, the DL technique performs the best while the

TM technique performs the worst for incident triage in terms

of accuracy@1, accuracy@3, and accuracy@5. Moreover, for

the most important metric accuracy@1, the DL technique

performs the best for the largest number of subjects. That is,

among these studied techniques, the DL technique is the most

effective one for incident triage of online service systems. One

possible reason is that the DL technique considers the semantic

information of incident reports via word embedding, which is

suitable in the incident-triage context. However, the accuracy

of these studied techniques (including the DL technique) still

6 http://scikit-learn.org/stable/.
7 https://radimrehurek.com/gensim/.
8 https://mxnet.incubator.apache.org/.

has room to further improve for incident triage of online ser-

vice systems. For example, the accuracy@1 value of the most

effective technique for subject P3 is only 0.42. In particular,

as demonstrated in the existing studies also using industrial

subjects [10], [11], the average accuracy@1 value of the MLE

technique achieves 0.71 on five industrial subjects (while its

value is 0.58 in our context), and the average accuracy@5

value of the DL technique achieves 0.92 on four industrial

subjects (while its value is 0.85 in our context). That further

demonstrates the effectiveness of these bug-triage techniques is

discounted in our incident-triage context, and thus the accuracy

of incident triage should be further improved.

We further analyzed the effectiveness of the studied bug-

triage techniques for the incident reports involving reassign-

ment in the testing data. These incidents are incorrectly

assigned at the first time, and thus are able to incur larger cost

as presented in Section II-B2. Therefore, accurately assigning

these incident reports are more important. Table V shows

the effectiveness of the studied techniques on these incident

reports. From this table, all the studied bug-triage techniques

perform significantly worse than their effectiveness shown in

Table IV on average. That indicates that the effectiveness of

these studied techniques is largely discounted for assigning the

incident reports that are incorrectly assigned at the first time.

In particular, the accuracy@1 values of them range from 0.17

to 0.52 on average, which are relatively low, demonstrating

that these studied techniques still need to be further largely

improved for incident reports involving reassignment. Among

these techniques, the DL technique still performs the best,

which further shows that the DL technique is more suitable

for the incident-triage context.

To sum up, in general, the studied bug-triage techniques

(except the TM technique) perform relatively well on incident

triage for online service systems, while they perform relatively

poorly for the incident reports involving reassignment, indi-

cating that there is still considerable room for improving the

accuracy of incident triage, especially for the incident reports

involving reassignment. Also, the DL technique performs the

best among these techniques for incident triage.

2) Efficiency: We also investigated the efficiency of the

studied bug-triage techniques, including the training time

and the recommendation (testing) time. Table VI shows the

efficiency results of the studied bug-triage techniques. From

the second row of this table, we can see that much time is

spent on the phase of training for all the studied bug-triage

techniques, ranging from 91.93 seconds to 13,607.86 seconds.

However, the time consumption is acceptable since the phase

of training is offline, which cannot lead to the delay of incident

triage. Considering the whole computation resources, the DL,

TM, TG, and FS techniques seem to be better than the other

two techniques in terms of the training efficiency. From the

last row in this table, we can see that the time spent on

recommending the responsible team for an incident report is

little for all the studied bug-triage techniques, ranging from

0.0002 seconds to 0.8267 seconds.

Overall, the results demonstrate that all these techniques are
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TABLE IV: Accuracy of the studied bug-triage techniques for all incident reports in testing data

Sub Accuracy@1 Accuracy@3 Accuracy@5
MLI MLE DL TM TG FS MLI MLE DL TM TG FS MLI MLE DL TM TG FS

P1 0.62 0.63 0.70 0.28 0.64 0.43 0.75 0.79 0.78 0.45 0.72 0.64 0.79 0.81 0.81 0.54 0.81 0.71
P2 0.65 0.65 0.69 0.50 0.68 0.63 0.83 0.81 0.84 0.71 0.81 0.78 0.85 0.84 0.85 0.78 0.85 0.83
P3 0.38 0.42 0.41 0.18 0.41 0.29 0.60 0.57 0.61 0.37 0.62 0.52 0.66 0.64 0.72 0.45 0.68 0.62
P4 0.67 0.45 0.72 0.16 0.75 0.64 0.85 0.87 0.88 0.47 0.90 0.84 0.91 0.90 0.91 0.55 0.93 0.90
P5 0.56 0.55 0.68 0.33 0.68 0.48 0.61 0.76 0.77 0.46 0.77 0.73 0.64 0.81 0.81 0.53 0.81 0.83
P6 0.52 0.61 0.83 0.45 0.78 0.58 0.62 0.83 0.89 0.66 0.85 0.78 0.71 0.85 0.90 0.69 0.88 0.83
P7 0.35 0.32 0.64 0.35 0.67 0.55 0.50 0.78 0.73 0.45 0.80 0.72 0.60 0.80 0.77 0.53 0.83 0.78
P8 0.66 0.69 0.82 0.26 0.75 0.48 0.79 0.85 0.87 0.41 0.88 0.65 0.85 0.87 0.89 0.46 0.92 0.72
P9 0.77 0.78 0.81 0.39 0.77 0.64 0.83 0.89 0.92 0.59 0.87 0.79 0.88 0.91 0.94 0.73 0.90 0.88
P10 0.53 0.70 0.77 0.29 0.72 0.42 0.77 0.84 0.84 0.47 0.77 0.64 0.88 0.86 0.88 0.54 0.83 0.73

Avg. 0.57 0.58 0.71 0.32 0.68 0.51 0.71 0.80 0.81 0.50 0.80 0.71 0.78 0.83 0.85 0.58 0.84 0.78

TABLE V: Accuracy of the studied bug-triage techniques for incident reports involving reassignment in testing data

Sub Accuracy@1 Accuracy@3 Accuracy@5
MLI MLE DL TM TG FS MLI MLE DL TM TG FS MLI MLE DL TM TG FS

P1 0.28 0.26 0.28 0.03 0.28 0.17 0.38 0.38 0.38 0.16 0.33 0.25 0.42 0.41 0.85 0.24 0.40 0.30
P2 0.65 0.64 0.69 0.50 0.67 0.63 0.83 0.81 0.84 0.71 0.71 0.78 0.85 0.83 0.94 0.78 0.82 0.83
P3 0.19 0.17 0.26 0.04 0.21 0.14 0.38 0.29 0.44 0.18 0.32 0.34 0.45 0.36 0.57 0.28 0.45 0.46
P4 0.75 0.42 0.75 0.17 0.76 0.65 0.95 0.92 0.91 0.35 0.86 0.90 0.96 0.94 0.80 0.42 0.93 0.94
P5 0.57 0.54 0.64 0.17 0.64 0.33 0.85 0.68 0.84 0.22 0.70 0.77 0.87 0.85 0.65 0.38 0.75 0.87
P6 0.56 0.46 0.64 0.13 0.57 0.30 0.85 0.82 0.84 0.38 0.67 0.58 0.89 0.86 0.84 0.40 0.86 0.75
P7 0.41 0.31 0.47 0.14 0.45 0.34 0.56 0.65 0.59 0.20 0.50 0.50 0.66 0.70 0.42 0.29 0.64 0.57
P8 0.21 0.24 0.33 0.18 0.26 0.24 0.44 0.36 0.53 0.20 0.47 0.32 0.62 0.50 0.86 0.22 0.64 0.40
P9 0.47 0.57 0.57 0.33 0.61 0.45 0.69 0.70 0.82 0.44 0.66 0.59 0.75 0.74 0.89 0.59 0.75 0.73
P10 0.48 0.38 0.53 0.03 0.64 0.09 0.65 0.73 0.71 0.23 0.65 0.42 0.71 0.76 0.57 0.30 0.73 0.51

Avg. 0.46 0.40 0.52 0.17 0.51 0.33 0.66 0.63 0.69 0.31 0.59 0.55 0.72 0.69 0.74 0.39 0.70 0.63

TABLE VI: Efficiency of the studied techniques (seconds)

Tech. MLI MLE DL TM TG FS

Train 8579.18 13,607.86 426.97 91.93 160.31 242.19
Test 0.0201 0.0804 0.0010 0.8267 0.0002 0.3367

practical for incident triage in terms of time efficiency.

IV. IMPLICATIONS FOR INCIDENT TRIAGE

A. Incident Triage and Bug Triage

Over the years, many bug-triage techniques have been

proposed [2]–[8]. Considering the similarity between bug

triage and incident triage, intuitively, these existing bug-triage

techniques may be applied to incident triage. Indeed, the

results presented in Section III-C demonstrate that the studied

bug-triage techniques are able to assign incident reports to the

responsible teams to a certain extent, but their effectiveness

still needs to be further improved, especially for the incident

reports involving reassignment. In general, incident triage for

online service systems has the following different characteris-

tics with the traditional bug triage:

• Traditional bug reports are written manually by submit-

ters, while incident reports for online service systems tend

to be created and submitted automatically by monitors,

although there is also a small portion of incident reports

that are manually written by engineers. More specifically,

for the 20 online service systems used in Section II,

around 9% incident reports are manually written while

around 91% incident reports are automatically created

and submitted by monitors on average. The reason is

that an online service system heavily depends on a large

number of monitors to guarantee its quality, i.e., timely

check the runtime state and behavior of the online service

system. Once a monitor detects an incident, it could

automatically create and submit an incident report based

on certain template.

• Traditional bugs are reported and treated individually

in the bug-triage context, while many incidents tend to

have correlations. i.e., time correlation (reported around

the similar time) and location correlation (reported from

similar locations). There are two major reasons: 1) A

monitor checks the runtime state and behavior of an

online service system at regular time intervals, and thus

a series of incident reports caused by the same root

cause could be created and submitted continuously by

the monitor; 2) Due to the propagation of failures, a

number of monitors are able to detect incidents caused

by the same root cause, and then each of these monitors

could create and submit a separate incident report. In

these cases, the incident reports caused by the same

root cause tend to have similar reporting time or be

reported from close locations. Figure 4 shows examples

of time correlation among incident reports assigned to

three teams of an online service system in Microsoft.

In the figure, the x-axis represents a period of time

and the y-axis represents the number of incident reports
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Fig. 4: Examples of time correlation of incident reports

that are assigned to the team at a time unit9. Higher

bars mean larger numbers, indicating that more incidents

are assigned to the team within the time unit (therefore

stronger time correlation among the incident reports).

In particular, many bars could be clustered together,

indicating that the time correlation also exists within a

larger time interval (i.e., several continuous time units).

According to the number and distribution of incident

reports, we observe that there is indeed time correlation

among incident reports assigned to a team.

• For an online service system, incidents occur more fre-

quently than bugs. This is because incidents not only

can be caused by source code bugs, but also can be

caused by various other factors, e.g., misconfigurations,

hardware failures, service unavailable, etc. Therefore,

in the incident-triage context, when there are incidents

that are assigned incorrectly, it is more likely to lead

to the backlog of incidents and delay the process of

incident management due to reassignment. Therefore, it is

desirable to have a more accurate incident triage method.

• Traditional bug triage tends to identify the responsible

developer for each bug report, while incident triage for

online service systems aims to find the responsible team

for each incident report. The reason is that an online

service system is often a large-scale system-of-systems,

which requires a number of service teams to maintain.

Within each team, the work is distributed internally,

which could improve the efficiency for restoring the

online service system.

B. Insights for Improving Incident Triage

Our investigation shows that incident management has be-

come a critical task for online service systems, and incident

triage plays an important role during the incident management

process. Based on our empirical evaluation, we have obtained

the following insights for improving incident triage:

• Leveraging more incident data: Since a large portion of

incidents is detected by monitors for an online service

system, there are actually a lot of monitoring data that

9Due to the policy of Microsoft, we cannot report the exact time unit.

can be used for incident triage, such as service-level logs,

performance counters, and machine/process/service-level

events. These monitoring data is relevant to the reported

incidents to a certain extent, and thus leveraging them

may further improve the accuracy of incident triage. For

example, we can propose frequent-pattern-mining based

techniques to analyze the service log information and

get the suspicious execution patterns for incidents. The

characteristics of these suspicious execution patterns may

facilitate the recommendation of the responsible teams.

• Leveraging the time and location correlations among
incidents: Since a series of incidents caused by the same

root cause tend to be reported around similar time or from

close locations, the characteristics of time and locations

may facilitate incident triage. For example, instead of

individually recommending the responsible team for each

incident report, we can consider the characteristics of

the incidents reported around the similar time as the

current incident or the incidents reported around the

nearby locations, which may further improve the accuracy

of incident triage.

• Considering the workload of teams: Since incidents occur

more frequently than traditional bugs, it is easier to lead to

the backlog of incident reports for a team. That is, a team

is more likely to be overloaded in the incident context.

Therefore, it is necessary to consider the workload of

teams when assigning incident reports. To make incident

management more practical, cost-aware incident triage

techniques are desired. In this direction, we may adapt

the existing cost-aware bug-triage techniques [4], [28] for

incidents, and then further improve these techniques by

considering more domain-specific knowledge of incidents

for online service systems.

V. THREATS TO VALIDITY

The internal threat to validity mainly lies in the imple-

mentations of the studied bug-triage techniques. To reduce

this threat, we reimplemented these techniques strictly fol-

lowing the description about them in the papers, and the

first two authors carefully checked the implementations. For

many algorithms (e.g., machine learning algorithms) used in

these techniques, we adopted the implementations provided by

mature tools such as scikit-learn, which have been presented

in Section III-B2.

The external threats to validity mainly lie in the used

subjects and the studied bug-triage techniques in the study.

For the used subjects, we used 20/10 real-world online service

systems in Microsoft in the two studies, respectively. To our

best knowledge, this is the most large-scale study targeting

at the triage problem (including bug triage) in industry. Even

so, they may not represent other online service systems from

other companies. In the future, we will perform a larger scale

evaluation on the systems from different companies, as well as

on open source systems. For the studied bug-triage techniques,

we selected six techniques as the representatives following the

criteria presented in Section III-A. These studied techniques
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may not represent other techniques. To reduce this threat, we

first divided existing techniques into five categories based on

their used technical aspects, and then selected one or two

typical techniques from each category. That is, we try to

consider the diversity of techniques. In the future, we will

evaluate more techniques for incident triage.

The construct threats to validity mainly lie in the used

parameters in the techniques and the adopted metrics. To

reduce the threat from the parameters, we adopted the default

parameters provided by the mature tools. For the parameters to

be set additional, we set them based on a small dataset. In the

future, we will explore the impact of various parameters. To

reduce the threat from the used metrics to evaluate existing

triage techniques, we considered the effectiveness and effi-

ciency metrics. In particular, for the effectiveness metric, we

adopted the accuracy@n metric, which has been widely used

in the existing work [3], [13], [27]. For the metric to measure

the reassignment cost, we use the time spent on reassignments,

but this metric may be bias. In the future, we will consider

more metrics to sufficiently measure them.

VI. RELATED WORK

A. Bug Triage Techniques

Besides the six studied techniques in our work, there are

many other bug-triage techniques. For example, Xia et al. [27]

proposed a specialized topic model based bug triage technique,

which considers the product and component information of

bug reports to construct the mapping from term space to topic

space for bug triage. Xuan et al. [5] proposed a machine-

learning based bug triage technique by using data reduction

techniques. More specifically, this technique first conducts the

instance selection and feature selection for reducing training

data before training a classifier using certain machine learning

algorithm. Bhattacharya and Neamtiu [29] proposed to use

a fine-grained incremental learning method and multi-feature

tossing graphs (labeling the edges of tossing graphs using

developer expertise and the nodes using developer activity

on the basis of the original tossing graphs [3]) for bug

triage. Besides the five categories, there are some bug-triage

techniques based on other technical aspects. Hu et al. [6]

proposed a bug-triage technique based on historical bug-

fix information. More specifically, this technique models the

relationship between developers and source code components,

and also the relationship between source code components

and the associated bugs. Badashian et al. [30] proposed a

bug-triage technique based on the Stack Overflow platform.

More specifically, it extracts the expertise of developers from

the social software-development platforms for bug triage.

Different from the above-mentioned related work, our work

conducted an empirical study to evaluate the effectiveness

of typical bug-triage techniques on incident triage for online

service systems in industry.

B. Empirical Studies on Bug Triage

Apart from proposing various novel bug-triage techniques,

there are also a number of empirical studies on the area of bug

triage. Baysal et al. [31] conducted a study to revisit bug triage

practices interviewed with Mozilla Core and Firefox devel-

opers. Goyal and Sardana [32] conducted an empirical study

to compare machine-learning based bug-triage techniques and

information-retrieval based bug-triage techniques based on

four open-source projects. Dedík and Rossi [33] conducted an

empirical study to explore the differences of machine-learning

based bug-triage techniques between open-source projects and

industrial projects. Lin et al. [14] conducted an empirical study

to explore bug triage automation based on Chinese bug data.

Karim et al. [34] conducted an empirical investigation for the

single-objective and multi-objective evolutionary algorithms

for bug triage. Jonsson et al. [10] conducted an empirical study

to investigate the effectiveness of various machine learning

algorithms based on industrial projects. Different from them,

our work is the first work to explore incident triage rather

than bug triage. In particular, we conducted an empirical study

to better understand the incident-triage practice in industry,

and an empirical evaluation of typical bug-triage techniques

for incident triage of online service systems. Furthermore, we

considered the bug-triage techniques from different technical

aspects (e.g., machine-learning based techniques, topic-model

based technique, and tossing-graph based technique).

C. Incident Management

Our work is also related to incident management since inci-

dent triage is an initial step of the process. Most of incident-

management work focuses on the identification of incident
beacons [35], [36], which are formed from a combination of

system metrics with unusual values that produce symptoms.

For example, Cohen et al. [36] proposed a Tree-Augmented-

Network (TAN) approach to deducing a TAN model, and the

model is able to predict system SLO (Service Level Objective)

states based on a few system metrics. Here the approach

identifies the metrics used by the model as service-issue

beacons. Besides, some work aims to associate a new incident

with a previous known incident [37], [38]. For example, Duan

and Babu [37] proposed an active-learning based approach to

improving the accuracy, which maximizes the benefits gained

from new unknown instances to facilitate manual labeling

efforts. In addition, Lou et al. [1], [39], [40] presented an

experience report on applying software analytics in incident

management of online service systems, including incident

diagnosis and mitigation. Different from them, our work is the

first one to explore incident triage for online service systems,

which is an initial step of incident management.

VII. CONCLUSION

Incident triage is a critical task for maintaining a large-

scale online service system. To better understand the incident-

triage practice in industry, we perform an empirical study of

incident triage on 20 real-world, large-scale online service

systems in Microsoft. Through the empirical study, we find

that incident reassignment occurs frequently, which incurs

unnecessary cost, especially for the incident reports with high

severity. We also evaluate six typical automated bug-triage
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techniques for incident triage and find that the recent deep-

learning based technique is the most effective one. However,

the effectiveness of the existing bug-triage techniques still

needs to be further improved for incident triage, especially

for the incident reports involving reassignment. We further

discuss the possible improvements in the paper.

To our best knowledge, we are the first to investigate

incident triage in industrial practice. We believe that our work

is useful for practitioners and researchers to improve the

current incident-triage practice for online service systems.
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