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Abstract—Heterogeneous defect prediction (HDP) aims to
predict defect-prone software modules in one project using het-
erogeneous data collected from other projects. Recently, several
HDP methods have been proposed. However, these methods
do not sufficiently incorporate the two characteristics of the
defect prediction data: (1) data could be linearly inseparable,
and (2) data could be highly imbalanced. These two data
characteristics make it challenging to build an effective HDP
model. In this paper, we propose a novel Ensemble Multiple
Kernel Correlation Alignment (EMKCA) based approach to
HDP, which takes into consideration the two characteristics
of the defect prediction data. Specifically, we first map the
source and target project data into high dimensional kernel
space through multiple kernel leaning, where the defective
and non-defective modules can be better separated. Then, we
design a kernel correlation alignment method to make the data
distribution of the source and target projects similar in the
kernel space. Finally, we integrate multiple kernel classifiers
with ensemble learning to relieve the influence caused by
class imbalance problem, which can improve the accuracy
of the defect prediction model. Consequently, EMKCA owns
the advantages of both multiple kernel learning and ensemble
learning. Extensive experiments on 30 public projects show that
EMKCA outperforms the related competing methods.

Keywords-heterogeneous defect prediction; kernel correlation
alignment; multiple kernel learning; ensemble learning; lin-
early inseparable; class imbalance

I. INTRODUCTION

To build high quality software systems, developers spend

much effort on software testing and debugging. However,

developers often have limited resources and need to prior-

itize these efforts. Many software defect prediction tech-

niques have been presented to help with the prioritiza-

tion of testing efforts by predicting defect-prone modules

(instances) [1, 2, 3, 4, 5]. Most existing software defect

prediction methods are designed for within-project defect

prediction (WPDP), which detects the defect-prone instances

using the prediction model built from historical data of the

same project [6, 7, 8, 9, 10, 11]. Usually WPDP works when

there is a sufficient amount of historical defect data available

for training the model. However, in practice, historical defect

data may be very limited for some projects [12, 13, 14, 15],

which hinders the application of WPDP.

To address this problem, cross-project defect prediction

(CPDP), which predicts defects in a project using prediction

models trained from historical data of other projects, has

been presented [16, 17, 18, 19, 20]. Existing CPDP methods

require that the instances of source and target projects have

the same metrics (features), i.e., the metric sets should

be identical between projects. However, in many cases,

source and target projects may share few common met-

rics [21, 22]. Finding other projects with multiple common

metrics can be challenging. In this scenario, the existing

CPDP methods using only common metrics cannot obtain

desirable results, because the informative metrics necessary

for building a good prediction model may not exist across

the datasets [21, 22].

Recently, heterogeneous defect prediction (HDP) mod-

els [21, 22, 23, 24] are proposed to predict defects across

projects with heterogeneous metrics sets, i.e., source and

target projects have different metric sets. For example, Jing

et al. [21] proposed a transfer CCA+ method by utilizing

unified metric representation and CCA-based transfer learn-

ing technique for HDP. Nam and Kim [22] employed metric

selection and metric matching techniques to predict defects

across projects with heterogeneous metric sets.

In general, defect data consists of different types of met-

rics, e.g., Lines of Code (LOC), complexity, change metrics,

and so on. Different metrics quantify the different aspects of

the data. In practice, different metrics usually have different

physical meanings and distributions, leading to the fact that

the defect data instances usually lie on a nonlinear feature

space. However, existing HDP methods [21, 22, 23, 24]

assume that the feature space of instances is linear, and learn

the linear correlation of features between source and target

projects. For example, Jing et al. [21] aimed to learn the

linear correlation of source and target metrics in the original

feature space. Nam and Kim [22] proposed to match source

and target metrics by measuring the linear similarity of each

source and target metric pair. Hence, these methods may
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face a linearly inseparable problem [25, 26]. In other words,

these methods are not able to accurately catch the nonlinear

correlations among the defect data.
Furthermore, defect prediction data is often highly im-

balanced [27, 28, 29, 30]. That is, the data contains much

more non-defective instances (majority) than the defective

ones (minority). It is challenging for most conventional

classification algorithms to work with data that has an

imbalanced class distribution. The imbalanced distribution

could cause misclassification of the instances in the minority

class, and this is an important factor accounting for the

unsatisfactory prediction performance [1]. However, most

HDP methods [21, 22, 23] do not take the class imbalance

problem into consideration.
In this paper, we consider the above mentioned two char-

acteristics of defect prediction data (i.e., linearly inseparable

and class imbalance), and propose a novel HDP approach,

named Ensemble Multiple Kernel Correlation Alignment

(EMKCA). EMKCA simultaneously utilizes multiple kernel

learning and ensemble learning to address the issues of

linearly inseparable and imbalanced classification. More

specifically:
(1) To handle the linearly inseparable problem, EMKCA

maps source and target data into a kernel space, and reduces

the differences of data distribution through kernel correlation

alignment. In the kernel space, defective and non-defective

instances can be better separated, thus the classification

performance can be improved. By employing multiple kernel

learning technique, EMKCA can make better use of the

information contained in the source and target data.
(2) To alleviate the influence of the class imbalance prob-

lem, EMKCA combines multiple kernel classifiers together

and fuses the prediction results based on the probabilistic

outputs. The ensemble classifiers can make full use of the

diversity of individual classifiers, thus the misclassification

of the instances in the minority class can be decreased [31].
To evaluate the proposed EMKCA approach, we conduct

large-scale experiments on 30 public projects from five

groups (including NASA, SOFTLAB, ReLink, AEEEM, and

PROMISE). The evaluation is centered around three research

questions:

• RQ1: Does EMKCA achieve better prediction perfor-
mance than WPDP?

• RQ2: Does EMKCA achieve better prediction perfor-
mance than the CPDP methods?

• RQ3: Does EMKCA achieve better prediction perfor-
mance than the existing HDP methods?

RQ1, RQ2 and RQ3 lead us to investigate whether our

approach achieves better prediction performance than the

existing WPDP, CPDP and HDP models, respectively. Our

experimental results show that EMKCA outperforms related

methods. In particular, comparing to WPDP, CPDP and HDP

methods, our EMKCA approach improves the mean AUC on

30 projects by 13.76%, 12.90% and 9.42%, respectively. The

non-parametric statistical significance test and the effect size

test confirm the above results.

The remainder of the paper is organized as follows:

Section II reviews the related work. Section III presents a

detailed account of our approach. The experimental setup

and results are given in Section IV. In Section V, we provide

discussions about the proposed approach and some threats

to validity. The conclusions are drawn in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we briefly review the typical cross-project

defect prediction and heterogeneous defect prediction meth-

ods, and point out their limitations.

A. Cross-project Defect Prediction Methods

Cross-project defect prediction (CPDP) refers to building

defect prediction models for software modules in a target

project using historical data from other existing projects.

In recent years, we have witnessed a lot of interest in

developing new CPDP methods [16, 32, 18, 33, 34, 35, 36].

Zimmermann et al. [12] performed 622 cross-project pre-

dictions and showed that careful selection of training data

and the characteristics of data and process play important

roles in successful CPDP. Turhan et al. [13] presented a

nearest-neighbor filter (NN-filter) method to select training

data close to within-project data. Ryu et al. [37] investi-

gated the applicability of the class imbalance learning under

CPDP setting and designed a boosting based model named

value cognitive boosting (VCB). It sets similarity weights

according to distributional characteristics, and combines the

weights with the asymmetric misclassification cost designed

by the boosting algorithm for appropriate resampling. Jing

et al. [38] first employed the semi-supervised transfer com-

ponent analysis (SSTCA) method to make the distributions

of source and target data consistent, and proposed the

SSTCA+ISDA prediction approach by combining ISDA

(improved subclass discriminant analysis) for cross-project

class imbalance problem.

However, existing CPDP methods learn the prediction

models by using the common metrics contained in the source

and target projects. In practice, the size of common metric

sets across source and target data may be very small [21, 22],

which will limit their prediction performance.

B. Heterogeneous Defect Prediction Methods

Recently, several HDP methods have been proposed [21,

22, 23, 24]. Since the metrics except the common metrics

might have favorable discriminant ability, Jing et al. [21]

proposed a HDP method, namely CCA+, which utilizes

unified metric representation (UMR) and CCA-based trans-

fer learning technique. Specifically, the UMR consists of

three types of metrics, including the common metrics of

the source and target projects, source-project-specific met-

rics, and target-project-specific metrics. By learning a pair
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of projective transformations under which the correlation

of the source and target data is maximized, CCA+ can

make the data distribution of the target similar to that of

the source. Experiments on public projects indicate that

CCA+ can achieve good prediction results. Meanwhile, Nan

and Kim [22] presented another solution for HDP. They

firstly employed the metric selection technique to remove

redundant and irrelevant metrics for source data. Then, they

matched up the metrics of source and target data based on

their similarity such as distribution or correlation. After these

processes, they finally arrived at a matched source and target

metric sets. With the obtained metric sets, they built HDP

model to predict labels of target instances. They found that

about 68% of HDP predictions outperform or are comparable

to WPDP predictions with statistical significance. Addition-

ally, He et al. [23] developed CPDP-IFS to address the prob-

lem of heterogeneous metric sets (Imbalanced Feature Sets)

in CPDP. They used distribution characteristics vectors [14]

of each instance as new metrics to enable defect prediction.

Recently, Cheng et al. [24] presented a cost-sensitive corre-

lation transfer support vector machine (CCT-SVM) method

to deal with the class imbalance problem in HDP based on

CCA+ [21]. They took different misclassification costs into

consideration by incorporating the cost factors into the SVM

model to alleviate the impact of imbalanced data.

C. Limitations of Existing HDP Methods

Although the HDP methods described in the previous

section have made much progress, there are still ample room

for further improvement. We found that these existing HDP

methods do not sufficiently consider the two characteristics

of the defect prediction data:

(1) Defect data could be not linearly separable [25, 26].

In practice, defect data is usually constituted by multiple

different types of metrics, e.g., the NASA dataset [6, 39]

contains Halstead, McCabe complexity, LOC and other

miscellaneous metrics. These metrics reflect different aspects

of defect data, and have different distributions from each

other. For instance, cyclomatic complexity metric is subject

to exponential distribution [6] and LOC may follow a

lognormal distribution [40, 41]. These factors mean that

defect data may not be linearly separable.

(2) Defect data could be highly imbalanced [27, 28, 29,

30], i.e., the number of non-defective instances is much

more than that of defective ones. As shown in Table I, the

percentage of defects is low in most projects, especially for

the projects like PC1, AR1, LC and tomcat6.0, whose data

is highly imbalanced.

These two data characteristics make it challenging to

build an effective HDP model. With respect to the linearly

inseparable problem, these HDP methods learn the defect

predictors by regarding the feature space of instances to be

linear, which will bring negative influence to the decision of

classifiers [9], and further affect the subsequent prediction.

With respect to the class imbalance problem, most HDP

methods do not pay attention to this problem, therefore

restricting their prediction performance [1]. Different from

these methods, in this paper, we attempt to deal with the

above mentioned two problems simultaneously.

III. PROPOSED APPROACH

In HDP, the main challenge is to overcome the data

distribution differences between source and target projects

when learning a prediction model [21, 22]. In fact, HDP

can be viewed as a specific case of heterogeneous transfer

learning, which aims to transfer the knowledge learned from

a source project to a target project. Domain adaptation is

an advanced transfer learning technique [42], which aims

to handle distinct distributions between source and target

domains, and uses the data in source domain to build a

classifier that will perform well in target domain.

Correlation alignment [43], which is a recently presented

unsupervised domain adaptation method, has achieved good

results for object recognition and sentiment analysis tasks.

However, it is only designed for homogeneous domain

adaptation, i.e., the source and target domains have the same

types of features. So it cannot be directly used for HDP.

Motivated by [43], we design an Ensemble Multiple Kernel

Correlation Alignment (EMKCA) based approach to HDP.

Specifically, to address the linearly inseparable problem,

EMKCA utilizes multiple kernel learning to map source and

target data to high dimensional kernel space, and reduces

the difference of data distribution through correlation align-

ment. To alleviate the influence caused by class imbalance

problem, EMKCA employs ensemble learning to incorporate

multiple kernel classifiers.

In this section, we first define some notations used in the

paper, and then review the correlation alignment method.

Finally, we describe the proposed EMKCA approach.

A. Notation

For the heterogeneous source and target data, assume that

the source contains a data set Xs = xi
s|ns

i=1 and a label set

Ys = yis|ns
i=1, where xi

s denotes the ith instance in Xs, yis is

the corresponding label, and ns is the number of instances in

Xs. The target consists of an unlabeled data set Xt = xi
t|nt
i=1,

where xi
t denotes the ith instance and nt is the number of

instances in Xt. Instance in source Xs can be represented

as xi
s = [ai1s , ai2s , · · · , aids

s ] and instance in target Xt can

be represented as xi
t = [ai1t , ai2t , · · · , aidt

t ]. Here, aijs (aijt )

represents the metric value corresponding to the jth metric

of xi
s (xi

t), ds and dt denote the size of metrics for the source

and target data, respectively. It is worth mentioning that, the

metric type or metric set size in Xs and Xt is different. We

employ the z-score normalization (i.e., zero mean and unit

standard deviation) to preprocess data, which is similar to

the N2 normalization in [16].
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B. Correlation Alignment

Correlation alignment [43] aims to transform the source

domain to the target domain space. The idea is to minimize

domain shift by aligning the second-order statistics (covari-

ance) of source and target distributions in an unsupervised

manner. It is a simple, effective and efficient domain adap-

tion method.

To minimize the distance between the second-order statis-

tics of the source and target data distributions, the objective

of correlation alignment is to learn a linear transformation A
for the original source metrics and is formulated as follows:

min
A

∥∥CŜ − CT

∥∥2
F
= min

A

∥∥ATCSA− CT

∥∥2
F

(1)

where CŜ , CS and CT are the covariance matrices of

transformed source data X̂s = XsA, source data Xs and

target data Xt, respectively. || · ||F denotes the matrix

Frobenius norm, which is defined as the square root of the

sum of the absolute squares of its elements.

After some derivation, the solution of Eq. 1 can be solved

as A = C
−1
2

S C
1
2

T . Then based on the transformed source data

X̂s, the model can be built and the target data Xt can be

predicted. Since correlation alignment changes the metrics

only, it can be applied to any base classifiers.

C. EMKCA

Kernel-based learning methods [44, 45, 9] can map the

historical defect data into a high dimensional feature space

to improve its separability. Compared with single kernel

learning, multiple kernel learning [44] can assemble different

types of kernel functions, and leverage the advantage of

each basic kernel function to improve the prediction accu-

racy. Ensemble learning uses a set of classifiers to make

predictions and is widely exploited for the class imbalance

problem [31, 28]. The generalization ability of an ensemble

classifier is generally much stronger than that of each sub-

classifier. In this section, we mainly describe the designed

EMKCA approach.

1) Multiple Kernel Correlation Alignment: Suppose that

there are two nonlinear mappings φ : xs → φ(xs) and

ϕ : xt → ϕ(xt), which can map Xs and Xt into high

dimensional kernel feature space. And the mapped Xs and

Xt can be formed as follows:

φ(Xs) =
[
φ(x1

s), φ(x
2
s), · · · , φ(xns

s )
]

ϕ(Xt) =
[
ϕ(x1

t ), ϕ(x
2
t ), · · · , ϕ(xnt

t )
] , (2)

The kernel matrices of source and target data separately

can be obtained by Ks = k(Xs, Xs) = φ(Xs)
Tφ(Xs) ∈

Rns×ns and Kt = k(Xt, Xt) = ϕ(Xt)
Tϕ(Xt) ∈ Rnt×nt ,

where k(·, ·) is the kernel function.

To address the heterogeneous metrics problem, we use

incomplete Cholesky decomposition (ICD) [46] to reduce

kernel matrix. The goal of ICD is to find a low-rank approx-

imation matrix Z of size n × r, for small r, such that the

Algorithm 1 The EMKCA approach to HDP.

Input: Source project data Xs and the corresponding class

labels Ys, target project data Xt, M kernel functions k(·, ·)
and the rank r
Output: The ensemble output H
Procedure:

1: Preprocess Xs and Xt using z-score normalization;

2: for i = 1 : M
(1). Map Xs and Xt into kernel spaces φ(Xi

s) and ϕ(Xi
t)

by using Eq. (2) to obtain Ki
s and Ki

t ;

(2). Use ICD to obtain Zi
s and Zi

t of rank r;

(3). Obtain transformed source data Ẑi
s = Zi

sĈ
−1
2

S Ĉ
1
2

T

according to the covariance matrices Zi
s and Zi

t ;

(4). Compute Euclidean distance of Ẑi
s and Zi

t to obtain

wi ;

(5). Obtain an output for each pair of Ẑi
s and Zi

t ;

endfor
3: Calculate the weight w by using Eq. (4);

4: Use Eq. (3) to obtain the ensemble output H by com-

bining M base classifiers.

difference K −ZZT becomes arbitrarily small. It generally

takes O(n3) operations to compute the entire kernel matrix

K ∈ Rn×n, while ICD allows approximations to the kernel

matrix in O(r2n) operations (typically r � n) [46]. Besides

computationally efficient, it has been shown that the reduced

kernel can approximate the solution of the full kernel matrix

well [47].

Using ICD, we can obtain the approximation matrices

Zs ∈ Rns×r and Zt ∈ Rnt×r corresponding to Ks and

Kt, respectively. Replacing Xs and Xt with Zs and Zt,

we can derive the kernel correlation alignment and obtain

the transformed source Ẑs = ZsÂ, where Â = Ĉ
−1
2

S Ĉ
1
2

T

is a transformation matrix, ĈS and ĈT separately denote

the covariance of Zs and Zt. Based on Ẑs, we can build a

classification model to predict Zt with any base classifiers.
2) Ensemble Output: Considering the benefits of multiple

kernel learning and ensemble learning, we use multiple

kernel learning to exploit multiple different feature spaces

and combine diversity information with ensemble to improve

the prediction performance. Let k1, k2, · · · , kM be a set of

base kernel functions that would be used to compute kernel

matrices. We can separately obtain M transformed source Ẑs

and target Zt. For the ith pair of Ẑi
s and Zi

t , we can obtain an

output based on the base classifier hi. Then, we can obtain

an ensemble output by combining M base classifiers:

H(Zt) =
∑M

i=1
wihi(Z

i
t), (3)

where wi is the weight for hi, and the weights wi’s are

usually assumed to be constrained by wi ≥ 0,
∑M

i=1 wi = 1.

A simple way is to get the weight for each base classifier

by using averaging ensemble, which treats each base clas-
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Figure 1. Overview of the proposed EMKCA approach for HDP.

sifier with equal importance. However, it may not hold true

in practice, the outputs of individual classifiers should have

different weights implying different importance. To this end,

we use the popularly used Euclidean distance as similarity

measure to calculate the weight of each base classifier. The

weights are calculated according to the following rules. The

more similar the data distribution of transformed source

and target is, the smaller their distance is, and the larger

the weight is. Specifically, for the ith pair of Ẑi
s and Zi

t ,

we firstly calculate the mean distance di between Ẑi
s and

Zi
t using Euclidean distance. Then, the weight wi can be

obtained by set it to 1/di. Based on the obtained M weights,

we normalize them as follows:

wi =
wi∑M
i=1 wi

∈ (0, 1), i = 1, 2, · · · ,M. (4)

Figure 1 illustrates the overall architecture of utilizing

EMKCA for HDP and Algorithm 1 provides the detail

execution process of EMKCA.

IV. EXPERIMENTS

A. Benchmark Datasets

We employ 30 publicly available and commonly used

projects from five different groups including NASA1 [39],

SOFTLAB1 [13], ReLink2 [48], AEEEM3 [49] and

PROMISE1 [50] as the experiment data. Table I shows the

details about these datasets.

NASA benchmark dataset is publicly available and widely

used for defect prediction [6, 39]. Each dataset in NASA

represents a NASA software system or sub-system, which

contains the corresponding defect-marking data and various

static code metrics. Static code metrics of NASA datasets

include size, readability, complexity etc., which are closely

related to software quality. We use only five projects includ-

ing CM1, MW1, PC1, PC3 and PC4 from NASA dataset,

since these five projects have 37 common metrics.

1http://openscience.us/repo/
2http://www.cse.ust.hk/∼scc/ReLink.htm
3http://bug.inf.usi.ch/

Turkish software company (SOFTLAB) consists of AR1,

AR3, AR4, AR5 and AR6 projects, which are embedded

controller software for white-goods [13]. The projects in

SOFTLAB are obtained from PROMISE repository. SOFT-

LAB has 29 metrics which includes Halstead and McCabe’s

cyclomatic metrics.

Datasets in ReLink were collected by Wu et al. [48] to

improve the defect prediction performance by increasing the

quality of the defect data. The defect information in ReLink

has been manually verified and corrected. ReLink consists of

three open source projects and each one has 26 complexity

metrics.

AEEEM was used to benchmark different defect pre-

diction models and collected by D’Ambros et al. [49].

Each AEEEM dataset consists of 61 metrics: 17 source

code metrics, 5 previous-defect metrics, 5 entropy-of-change

metrics, 17 entropy-of-source-code metrics, and 17 churn-of-

source code metrics [16, 22].

The fifth group was originally collected by Jureczko and

Madeyski [50] from the online PROMISE data repository,

which consists of some open source projects. The datasets

have 20 metrics in total, which contains McCabe’s cyclo-

matic metrics, CK metrics and other OO metrics.

B. Evaluation Measure

In this paper, we employ the commonly used measure

to evaluate the performance of defect prediction models:

AUC [51, 52, 53, 22, 54].

AUC is the area under the receiver operating characteristic

curve. This curve is plotted in a two-dimensional space with

false positive rate as x-coordinate and the true positive rate

(recall) as y-coordinate. The AUC is known as a useful

measure for comparing different models and is widely used

because it is unaffected by class imbalance and is indepen-

dent of the prediction threshold. The default cut-off threshold

is 0.5, which may not be the best cut-off value for other

performance measures in practice [20]. Lessmann et al. [51]

and Ghotra et al. [53] suggest to use the AUC for better

comparability. Hence, we select AUC as our performance
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Table I
DETAILS OF PROJECT USED IN EXPERIMENT

Group Project
# of
metrics

# of total
instances

# of
defective
instances

% of
defective
instances

NASA

CM1 37 327 42 12.84%
MW1 37 253 27 10.67%
PC1 37 705 61 8.65%
PC3 37 1077 134 12.44%
PC4 37 1458 178 12.21%

SOFTLAB

AR1 29 121 9 7.44%
AR3 29 63 8 12.70%
AR4 29 107 20 18.69%
AR5 29 36 8 22.22%
AR6 29 101 15 14.85%

ReLink
Apache 26 194 98 50.52%
Safe 26 56 22 39.29%
ZXing 26 399 118 29.57%

AEEEM

EQ 61 324 129 39.81%
JDT 61 997 206 20.66%
LC 61 691 64 9.26%
ML 61 1862 245 13.16%
PDE 61 1497 209 13.96%

PROMISE

ant1.7 20 745 166 22.28%
camel1.6 20 965 188 19.48%
ivy2.0 20 352 40 11.36%
jedit4.0 20 306 75 24.51%
log4j1.0 20 135 34 25.19%
lucene2.4 20 340 203 59.71%
poi3.0 20 442 281 63.57%
synapse1.2 20 256 86 33.59%
tomcat6.0 20 858 77 8.97%
velocity1.6 20 229 78 34.06%
xalan2.4 20 723 110 15.21%
xerces1.3 20 453 69 15.23%

measure. The higher AUC represents the better prediction

performance and the AUC of 0.5 means the performance of

a random predictor [52].

C. Baselines

We compare EMKCA with WPDP, NN-filter [13],

VCB [37], SSTCA+ISDA [38], CPDP-IFS [23], CCA+ [21],

HDP-KS (KSAnalyzer led to the best prediction perfor-

mance in the paper) [22] and CCT-SVM [24].

Comparison with WPDP: Comparing EMKCA to WPDP

will provide empirical evidence of whether EMKCA is

applicable in practice.

Comparison with the CPDP methods: NN-filter, VCB and

SSTCA+ISDA are three typical CPDP models. All of them

demand that the instances of source and target projects have

totally same metrics. For VCB and SSTCA+ISDA, these

two methods are designed to address the cross-project class

imbalance problem.

Comparison with the HDP methods: CPDP-IFS, CCA+,

HDP-KS and CCT-SVM are four HDP models. These meth-

ods have achieved encouraging prediction results. Among

them, only CCT-SVM considers the class imbalance prob-

lem. However, CCT-SVM utilizes the cost information in

the classification stage, and it is only applied to the SVM

classifier, thus it cannot be applied to other classifiers di-

rectly. Comparing to the experiments for CCT-SVM with 14

projects in four dataset groups, we conducted more extensive

experiments with 30 projects in five dataset groups.

We implement the above baselines in MATLAB follow-

ing the settings of the corresponding papers. The logistic

regression (LR) classifier has been widely used in the defect

prediction studies [12, 16, 22, 18, 55, 36]. To be fair, we

choose LR for all compared methods except for CCT-SVM

which uses the default SVM classifier [24]. Comparison

of EMKCA and CCT-SVM using SVM classifier will be

reported in Section IV-F4. We apply z-score normalization

to the source and target data before running these methods.

D. Experimental Settings

We use 30 projects from NASA, SOFTLAB, ReLink,

AEEEM and PROMISE groups as experimental data, and

perform heterogeneous cross-project defect prediction. We

select one project from 30 projects as the target, and each

project from other groups is used as the source in turn.

For example, when CM1 in NASA group of Table I acts

as the target, there exists 25 (30-5) cross-project prediction

combinations. Since we mainly focus on prediction across

datasets with heterogeneous metric sets, we did not conduct

defect prediction across projects in the same group where

datasets have the same metric sets. In total, we have 672

possible prediction combinations from these 30 projects of

five groups.

For WPDP, it is necessary to split datasets into training

and test sets. We apply a two-fold cross validation that

are used in the defect prediction models [16, 22, 55, 54].

Specifically, we use the first half for training and the second

half for test. Then we use the second half for training and the

first half for test in a reverse way. To tackle the randomness

of sampling, we repeat the random splits for 50 times. In

total, we have 100 tests for the classifier on each target. For

the other methods, we use the same test data and test splits

as used in the WPDP. We repeat the above cross-project

study 100 times, each time using the available source data

for training the models. Then, we report the mean results

and the corresponding standard deviations for each target

project.

E. Parameter Settings

For all experiments, we use a total of 10 base kernels

k(xi, xj) including 9 Gaussian kernels e−||xi−xj ||/2σ2

with

different σ in (2−4, 2−3, · · · , 24) and a linear kernel xT
i xj

on all features, where σ is the kernel parameter. For the

parameter r used in ICD, we set r = 60 by default, and

the different values of r will be discussed in Section V-A.

For the other compared methods, we follow the default

parameter settings used in their papers.

The LR is implemented in the popular LIBLINEAR [56]

(an award-winning library for large linear classification)

package. For LIBLINEAR execution, we use the options
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“-S 0” (i.e., logistic regression) and “-B 1” (i.e., no bias

term added) as used by Nam et al. [16].

F. Results

1) Comparison Result with Baselines: Table II reports

the mean prediction results of AUC for each target project.

The mean and median AUC across 30 target projects are also

reported in the fourth and third last rows of the table (denotes

“Mean”, “Median”) and the best values of each target project

are in bold font. From the table, we can see that EMKCA

achieves the best AUC performance in most cases when com-

pared with the baselines. In terms of the overall performance

on 30 target projects, EMKCA improves the mean AUC
by 13.76%, 27.40%, 18.85%, 12.90%, 16.80%, 16.43% and

9.42% over WPDP, NN-filter, VCB, SSTCA+ISDA, CPDP-

IFS, CCA+ and HDP-KS, respectively.

Possible reasons that EMKCA achieves better results

are as follows. Compared with WPDP: Generally, good

prediction models can be built when sufficient historical

defect data is available for WPDP [12, 13, 14]. However, in

practice, it is difficult to collect sufficient historical defect

data for new projects. In this case, the performance of

WPDP is usually limited. Different from WPDP, EMKCA

uses source data from other projects which may contain

some useful information for the target. Compared with the
CPDP methods including NN-filter, VCB and SSTCA+ISDA:
These CPDP methods only use the common metrics shared

by the source and target projects, which will limit their

performance, because some informative metrics necessary

for building a good prediction model may not be in the

common metrics across projects [21, 22]. Compared with
the HDP methods including CPDP-IFS, CCA+ and HDP-
KS: (1) These methods mainly focus on learning linear

correlation or similarity between the source and target

metrics. Different from them, EMKCA aims to learn the

nonlinear correlation using multiple kernel technique and

can accurately capture the nonlinear correlations among the

data. The kernel techniques have been theoretically and

empirically proven to be able to tackle linearly inseparable

problems by transforming data to high dimensional kernel

space [25, 26]. (2) These methods also do not consider the

class imbalance problem. The class imbalanced distribution

will make a lot of instances in the minority class misclas-

sified, which degrades their prediction performance [27, 1].

On the contrary, EMKCA uses ensemble learning [31] to

make predictions, which can relieve the influence caused by

the class imbalance problem.

Besides, we observe that the performance of EMKCA in

most SOFTLAB projects are not as good as that of the

baselines. Possible reasons are that: (1) EMKCA may be

sensitive to the projects with fewer instances such that it does

not achieve good performance. As shown in Table I, we can

see that most SOFTLAB projects have fewer instances than

other datasets, especially for the projects like AR3 and AR5.

(2) The weights based on Euclidean distance similarity for

each base classifier is not optimized, such that their weight

combination is not optimal for these targets. In this case,

each base classifier does not play a positive role for the

final ensemble output, they may be counterproductive and

conflicting instead. Hence, the prediction performance will

be degraded. In the future, we will use some heuristic or

search-based optimization methods to learn the weight of

each base classifier for the better ensemble.

2) Statistical Significance Test: To statistically analyze

the detailed prediction results, we conduct a non-parametric

Mann-Whitney U test at a confidence level of 95% on 20

random running. This statistic test has been used in the

defect prediction studies [57, 13, 17, 54]. The advantage

of using non-parametric statistical method is that it makes

no assumptions about the distribution of the data. As rec-

ommended by Menzies et al. [57], Mann-Whitney U test

does not demand that the two compared populations are of

the same size and it can avoid the need of Bonferroni-Dunn

test to counteract the results of multiple comparisons [58].

So we choose this test for evaluation. Then, we report the

win/tie/loss (w/t/l) results of our approach against each base-

line, like the work described in [59, 34, 14, 35, 18]. “Win”

means that the results of our approach are significantly better

than those of the baselines at a confidence level of 95%, “tie”

means ”equal” (no statistical significance), and otherwise

“lose”.

The second last row in Table II shows the w/t/l results

among the baselines and our approach. By using the w/t/l

evaluation, we can investigate the number of projects in

which our approach can outperform the compared meth-

ods. From Table II, EMKCA can statistically significantly

improve the performance of baselines in most cases. For

example, compared with HDP-KS, EMKCA obtains statis-

tically significant improvements for 23 projects out of 30 in

terms of AUC. It demonstrates that the proposed EMKCA

approach is effective with statistical significance.

3) Effect Size Test: To measure the degree of differences

in AUC results between our approach and the compared

methods, we compute Cliff’s delta (δ), which is a non-

parametric effect size test [60]. This test has been used in

the related defect prediction studies [38, 18, 5, 54, 20, 61].

In this context, δ is a measure of how often the values in one

method are larger than the values in a second method. All

possible values of δ are in the closed interval [−1, 1], where

−1 or 1 indicates that all values in one method are smaller or

larger than those of the other method, and 0 indicates that the

measure in the two methods is completely overlapping. As

Romano et al. suggested [60], the magnitude of the effect

size is as follows: negligible (N, |δ| < 0.147), small (S,

0.147 ≤ |δ| < 0.33), medium (M, 0.33 ≤ |δ| < 0.474) and

large (L, |δ| ≥ 0.474).

The last row in Table II shows Cliff’s δ for effect size

among the baselines and our approach. As mentioned above,

97



Table II
MEAN AUC RESULTS (± STANDARD DEVIATION) FOR EACH TARGET PROJECT USING DIFFERENT METHODS

Target WPDP NN-filter VCB SSTCA+ISDA CPDP-IFS CCA+ HDP-KS EMKCA
CM1 0.591±0.059 0.622±0.095 0.605±0.114 0.635±0.071 0.612±0.050 0.581±0.065 0.665±0.074 0.842±0.113
MW1 0.601±0.064 0.599±0.168 0.681±0.071 0.674±0.071 0.626±0.079 0.611±0.097 0.669±0.128 0.855±0.084
PC1 0.641±0.055 0.586±0.122 0.611±0.106 0.631±0.062 0.628±0.059 0.590±0.064 0.670±0.150 0.885±0.144
PC3 0.659±0.043 0.575±0.127 0.612±0.108 0.613±0.097 0.616±0.053 0.562±0.062 0.646±0.159 0.841±0.202
PC4 0.729±0.039 0.589±0.150 0.629±0.126 0.661±0.064 0.652±0.053 0.561±0.055 0.615±0.139 0.798±0.149
AR1 0.542±0.090 0.539±0.116 0.561±0.110 0.560±0.097 0.592±0.107 0.602±0.131 0.709±0.110 0.628±0.170
AR3 0.607±0.119 0.681±0.181 0.709±0.126 0.710±0.109 0.755±0.105 0.690±0.167 0.831±0.106 0.593±0.202
AR4 0.662±0.084 0.737±0.152 0.712±0.187 0.752±0.120 0.695±0.072 0.644±0.100 0.782±0.104 0.614±0.165
AR5 0.681±0.166 0.762±0.207 0.774±0.183 0.805±0.097 0.798±0.093 0.514±0.225 0.877±0.106 0.486±0.230
AR6 0.603±0.085 0.544±0.097 0.550±0.093 0.543±0.090 0.629±0.076 0.588±0.111 0.642±0.100 0.595±0.145
Apache 0.656±0.046 0.629±0.110 0.664±0.059 0.670±0.036 0.604±0.074 0.566±0.068 0.714±0.114 0.761±0.086
Safe 0.663±0.090 0.641±0.156 0.670±0.141 0.699±0.076 0.690±0.079 0.580±0.128 0.770±0.140 0.563±0.201
ZXing 0.568±0.030 0.563±0.054 0.569±0.055 0.581±0.029 0.572±0.038 0.597±0.048 0.622±0.077 0.759±0.103
EQ 0.690±0.022 0.572±0.138 0.577±0.131 0.642±0.045 0.632±0.074 0.645±0.084 0.675±0.150 0.830±0.218
JDT 0.741±0.019 0.532±0.191 0.640±0.140 0.699±0.040 0.671±0.079 0.716±0.062 0.665±0.156 0.754±0.157
LC 0.694±0.029 0.526±0.116 0.586±0.087 0.606±0.060 0.645±0.079 0.707±0.065 0.614±0.085 0.871±0.224
ML 0.656±0.023 0.531±0.134 0.580±0.099 0.642±0.027 0.599±0.048 0.650±0.033 0.637±0.075 0.738±0.131
PDE 0.644±0.021 0.603±0.127 0.613±0.104 0.658±0.030 0.616±0.049 0.654±0.052 0.659±0.113 0.729±0.164
ant-1.7 0.702±0.030 0.574±0.219 0.622±0.195 0.730±0.042 0.648±0.066 0.647±0.048 0.694±0.175 0.745±0.196
camel-1.6 0.594±0.028 0.526±0.076 0.533±0.074 0.580±0.022 0.552±0.031 0.595±0.043 0.579±0.057 0.729±0.158
ivy-2.0 0.662±0.061 0.563±0.250 0.680±0.190 0.756±0.057 0.621±0.083 0.684±0.072 0.683±0.197 0.866±0.132
jedit-4.0 0.676±0.041 0.487±0.179 0.650±0.116 0.676±0.058 0.609±0.063 0.626±0.068 0.648±0.132 0.798±0.169
log4j-1.0 0.708±0.066 0.645±0.162 0.664±0.145 0.708±0.059 0.671±0.089 0.645±0.082 0.702±0.142 0.749±0.139
lucene-2.4 0.627±0.046 0.514±0.105 0.579±0.085 0.602±0.037 0.611±0.046 0.592±0.059 0.610±0.089 0.712±0.160
poi-3.0 0.710±0.040 0.506±0.125 0.579±0.105 0.614±0.052 0.664±0.059 0.506±0.063 0.664±0.150 0.685±0.121
synapse-1.2 0.653±0.047 0.616±0.151 0.641±0.128 0.683±0.054 0.629±0.062 0.632±0.065 0.677±0.103 0.790±0.178
tomcat-6.0 0.680±0.049 0.566±0.238 0.654±0.197 0.744±0.053 0.659±0.060 0.719±0.047 0.690±0.170 0.844±0.185
velocity-1.6 0.647±0.045 0.497±0.090 0.580±0.061 0.586±0.040 0.540±0.073 0.552±0.066 0.602±0.133 0.761±0.131
xalan-2.4 0.653±0.039 0.554±0.200 0.629±0.159 0.702±0.044 0.607±0.063 0.667±0.048 0.650±0.156 0.816±0.225
xerces-1.3 0.692±0.050 0.501±0.142 0.606±0.099 0.638±0.052 0.617±0.051 0.685±0.070 0.649±0.100 0.804±0.183
Mean 0.654±0.078 0.584±0.164 0.626±0.136 0.659±0.091 0.637±0.088 0.639±0.106 0.680±0.142 0.744±0.196
Median 0.679 0.628 0.650 0.658 0.634 0.645 0.700 0.799
w/t/l 24/2/4 26/0/4 26/0/4 26/0/4 25/0/5 25/1/4 23/1/6 -
Cliff’s δ 0.397 (M) 0.506 (L) 0.438 (M) 0.390 (M) 0.443 (M) 0.440 (M) 0.291 (S) -

based on a Cliff’s δ, we can estimate the magnitude of

the effect size. For example, the Cliff’s δ between CCA+

and EMKCA is 0.440 and its magnitude is medium. That

is, the prediction performance of EMKCA is much better

than CCA+ with practical significance in our experimental

settings. The analysis between other baseline and EMKCA is

similar to the above in terms of the Cliff’s effect size test. In

summary, EMKCA outperforms the baseline methods with

significant differences.

4) Comparison of EMKCA and CCT-SVM Using SVM
Classifier: CCT-SVM [24] is only applied to the SVM

classifiers, and cannot be applied to other classifiers directly.

To be fair, we compare EMKCA to CCT-SVM using the

SVM classifier. To evaluate the prediction performance

of EMKCA and CCT-SVM using the SVM classifier, we

separately conduct experiment for these two methods. The

mean AUC results of EMKCA and CCT-SVM with the

SVM classifier across 30 target projects are 0.694 and 0.618,

respectively. In terms of the overall mean performance,

EMKCA improves the mean AUC by 12.30% over CCT-

SVM. In short, EMKCA overall outperforms CCT-SVM

in our experimental settings. The reason is that CCT-SVM

does not address the linearly inseparable problem. Instead,

EMKCA aims to learn nonlinear correlation using multiple

kernel technique, which can tackle this problem by trans-

forming data to high dimensional space. Besides, we find the

performance of EMKCA with LR outperforms SVM. This is

consistent with the work described in [53, 55], which show

that SVM was one of the lowest ranked classifiers in their

empirical study for defect prediction.

5) Summary: Answers to Research Questions: For RQ1,

the proposed EMKCA approach can achieve better or com-

parable results as compared with WPDP. For RQ2, EMKCA

performs better than the CPDP methods that use common

metrics. For RQ3, EMKCA overall outperforms the compet-

ing HDP methods. The statistical significance test and the

effect size test also validate our conclusions.

V. DISCUSSION

A. Effect of Different Setting of r

Recent work [62] has shown that the suboptimal parame-

ter settings have a large impact on the performance of defect

prediction models. In this section, to investigate the influence

of parameter r used in ICD on EMKCA, we change the

value of r in the range of {20, 30, 40, 50, 60, 70, 80, 90, 100}
to report the results across multiple runs. To this end, we
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Figure 2. The Pd, Pf and AUC of EMKCA using different values of r.

report the overall mean AUC across 30 target projects as well

as Pd (probability of detection or recall) and Pf (probability

of false alarm) measures. These two measures are widely

used in the defect prediction studies [6, 13, 8, 21, 9].

Figure 2 shows the mean Pd, Pf and AUC results achieved

by EMKCA on various r values across 30 target projects. We

can observe that the AUC results of EMKCA are gradually

declined, while the Pd and Pf are gradually improved with

the increasing of r from 20 to 100. Taking into account all

aspects, it is feasible to set r to 60.

B. The Visualization Results

Kernel-based methods have been theoretically and em-

pirically proven to be able to tackle the linearly inseparable

problem by transforming data from its original feature space

into a high dimensional kernel space [25, 26]. In this paper,

EMKCA maps historical defect data to the kernel space.

To graphically visualize the feature distribution of defect

data, we provide the visualization results of the original

feature space and the kernel feature space. Here, we take

CM1 project of NASA group as an example. Figure 3 shows

the feature distribution of the CM1 project, where the first

two principle features of each projected features are used

to illustrate these distributions. The principal component

analysis (PCA) [63] is used to extract two principle features

for showing the distribution in a two-dimensional space. As

shown in Figure 3, defective and non-defective instances are

entangled, and the distributions is relatively scattered in the

original space. In the kernel space, the features of defective

and non-defective instances are more likely to be learned.

The separability in the kernel space is better than it in the

original space.

C. Effect of Ensemble Learning

In this section, to examine the effect of ensemble learning,

we evaluate our EMKCA approach with and without en-

semble. We call the version of EMKCA without ensemble

KCA. Because we use 10 different kernel functions (i.e.,

9 Gaussian kernels and one linear kernel), there are 10

different results of KCA. Figure 4 shows the boxplot of AUC

Figure 3. Feature distribution of CM1, where the first two principle
features in original space and kernel space are used to illustrate these
distributions.

Figure 4. The boxplot of AUC across 30 projects for KCA/EMKCA with
different kernels.

across 30 projects for KCA/EMKCA with different kernel

functions. The bar indicates the first-third quartile range and

the circle denotes the median. The minimal and maximal

values are not displayed. Note that “KCA g 23” denotes the

KCA which uses Gaussian kernel with kernel parameter 23,

“KCA linear” denotes KCA which uses linear kernel, and

EMKCA denotes assembling all kernels. From this figure,

we can see that the AUC of EMKCA is higher than that

of each KCA. The results demonstrate that the ensemble

classifier generally outperforms each sub-classifier. We also

observe that different kernel parameters have large impact

on the prediction performance of KCA. Therefore, it is

important to select appropriate kernel parameter.
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D. Practical Guidelines for HDP

Prediction of software defects works well within the same

project when sufficient historical defect data is available for

training the prediction models [12, 13]. Therefore, for a

target project, if there is sufficient historical data at hand,

developers can employ WPDP to conduct defect prediction.

However, there might not be enough historical data for

a new software project or a new company. In practice,

there usually exists plenty of data from other projects. If

these external data has the same metric sets with the target

project, developers can conduct CPDP by using the recently

proposed CPDP methods [16, 35, 36, 37, 18, 38]. The above

CPDP methods may not be feasible when the metric sets

between the target and external projects are heterogeneous.

In this scenario, the recently proposed HDP methods [21, 22]

can be employed. In order to get more accurate predictions,

developers can apply our proposed EMKCA approach.

In Section IV-F, we conduct extensive and large-scale ex-

periments across 30 projects with heterogeneous metric sets

from five groups. Experimental results show that EMKCA

outperforms the typical CPDP methods (NN-filter, VCB

and SSTCA+ISDA), the HDP methods (CPDP-IFS, CCA+,

HDP-KS and CCT-SVM) and WPDP. The non-parametric

Mann-Whitney U statistical test and Cliff’s delta effect size

test also validate this conclusion. Therefore, we suggest

using EMKCA for projects lacking sufficient historical data

to learn defect predictors.

E. Threats to Validity

Recent research points out that experimental design may

impact the conclusions of the paper [64, 65]. In this paper,

we have identified several potential threats to the validity

about our empirical study.

Threats to Construct Validity. We used the Euclidean

distance based similarity measure to calculate the weight

for linear combination. Using other similarity techniques we

might obtain different prediction performance. Besides, we

only used LR and SVM classifiers to conduct experiments,

the performance of EMKCA is unknown for other classi-

fiers [51, 53]. In the future, we will employ other ensemble

techniques and classifiers to validate our proposed EMKCA

approach. Our results rely on two-fold cross validation. A

recent study [66] points out that model validation techniques

may produce different bias and variances of performance

estimates. Thus, the conclusions may differ when applying

other cross validation techniques.

Threats to Internal Validity. We used the AUC metric to

evaluate the prediction performance, which has been widely

used to evaluate the effectiveness of defect prediction [51,

53, 22, 54, 37]. Measuring prediction performance of other

evaluation measures (e.g., G-mean, Matthews correlation

coefficient) is left for future work. With respect to the related

compared methods, we carefully reimplemented these meth-

ods by following the corresponding papers. However, our

implementation may not be exactly the same as the original

papers, leading to possible bias in the comparison between

our approach and the baselines.

Threats to External Validity. Researchers should exper-

iment with a broader selection of datasets and metrics in

order to maximize external validity [67]. In this paper, we

chose 30 projects from five groups that are widely used in

papers published in top software engineering venues [49, 21,

6, 16, 22, 13, 48]. These projects come from both proprietary

(NASA and SOFTLAB) and open-source (ReLink, AEEEM

and PROMISE) projects. Therefore, our findings might not

be generalizable to other closed software projects. In the

future, we will reduce this threat by conducting further

experiments on more defect data from open source and

commercial software projects.

VI. CONCLUSION

Recently, heterogeneous defect prediction (HDP) has re-

ceived much research interest and provides a new perspective

to defect prediction. In this paper, we propose a novel ensem-

ble multiple kernel correlation alignment (EMKCA) based

approach to HDP. Extensive experiments are conducted on

30 publicly available projects from five groups. The non-

parametric Mann-Whitney U statistical test and Cliff’s delta

effect size test are employed for the evaluation. Experimental

results demonstrate the efficacy of EMKCA.

For the future work, we would like to use more software

project data that contains both open source and commercial

proprietary projects to validate the generalization ability of

EMKCA. We will also examine the performance of EMKCA

for the source and target projects with the same metric sets.

In addition, we will try to address the HDP problem with

other popular techniques, such as deep learning [33, 61].

We provide the MATLAB code that is used to conduct this

study at https:// sites.google.com/site/enmkca/ .
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