The Journal of Systems and Software 83 (2010) 803-814

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

The Journal of Systems and Software

i

Measuring design complexity of semantic web ontologies

Hongyu Zhang **, Yuan-Fang Li ", Hee Beng Kuan Tan ¢

2School of Software, Tsinghua University, Beijing 100084, China
b School of ITEE, The University of Queensland, Brisbane, Australia
€School of EEE, Nanyang Technological University, Singapore 639798, Singapore

ARTICLE INFO ABSTRACT

Article history:

Received 24 January 2009

Received in revised form 19 November 2009
Accepted 19 November 2009

Available online 1 December 2009

Ontology languages such as OWL are being widely used as the Semantic Web movement gains momen-
tum. With the proliferation of the Semantic Web, more and more large-scale ontologies are being devel-
oped in real-world applications to represent and integrate knowledge and data. There is an increasing
need for measuring the complexity of these ontologies in order for people to better understand, maintain,

reuse and integrate them. In this paper, inspired by the concept of software metrics, we propose a suite of

Index Terms:
Design complexity
Ontology

ontology metrics, at both the ontology-level and class-level, to measure the design complexity of ontol-
ogies. The proposed metrics are analytically evaluated against Weyuker's criteria. We have also per-
formed empirical analysis on public domain ontologies to show the characteristics and usefulness of

OWL the metrics. We point out possible applications of the proposed metrics to ontology quality control.

Ontology metrics
Software metrics

We believe that the proposed metric suite is useful for managing ontology development projects.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The Semantic Web (Berners-Lee et al., 2001) is an envisioned
extension of the current World Wide Web in which data is given
well defined meaning so that software agents can autonomously
process the data. It is also widely believed that Semantic Web
ontologies provide a solution to the knowledge management and
integration challenges (Searls, 2005; Auer et al., 2008; Smith
et al., 2007; Ruttenberg et al., 2009). Ontology languages such as
RDF Schema (Brickley and Guha, 2004) and OWL (Horrocks et al.,
2003) provide essential vocabularies to describe domain knowl-
edge, the underlying common model for data aggregation and
integration.

A great deal of efforts are being invested in applying Semantic
Web ontologies to create mutually agreeable and consistent vocab-
ularies to describe domain knowledge from disparate sources. For
example, the NCI Thesaurus Ontology' developed and actively cu-
rated by the National Cancer Institute is such an OWL ontology. It
defines 60,000+ named classes, a roughly equal number of anony-
mous classes and 100,000+ connections (properties) from and to
these classes. This ontology covers information about nearly
10,000 cancers and 8000 therapies. More recently, as the result of
the Linked Data project?, a large number of inter-connected RDF

* Corresponding author. Tel.: +86 10 62773275.
E-mail addresses: hongyu@tsinghua.edu.cn (H. Zhang), liyf@itee.uq.edu.au (Y.-F.
Li), ibktan@ntu.edu.sg (H.B.K. Tan).
T http://www.cancer.gov/cancertopics/terminologyresources.
2 http://linkeddata.org.

0164-1212/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.11.735

datasets, such as DBPedia®, DBLP?, FOAF®, US census data, etc., are
being generated and integrated. With more information being con-
verted to RDF/OWL and integrated, we believe that properly de-
signed OWL ontologies is essential to the effective management,
reuse and integration of these data.

As ontologies grow in size and number, it is important to be able
to measure their complexity quantitatively. It is well known that
“You cannot control what you cannot measure” (DeMarco, 1986).
Quantitative measurement of complexity can help ontology devel-
opers and maintainers better understand the current status of the
ontology, therefore allowing them to better evaluate its design and
control its development process. Research on human cognition
shows that humans have limited capabilities in information pro-
cessing (e.g., Miller, 1956; Simon, 1974). Experiences from the soft-
ware engineering field also suggest that there are correlations
between software complexity and quality (such as reusability
and maintainability) (Li and Cheung, 1987; Wilde et al., 1993; Koru
and Tian, 2003; Zhang et al., 2007). We believe such correlation ex-
ists between ontology complexity and quality too - in general,
more complex ontologies tend to be more difficult for a human
to comprehend, therefore more difficult to be maintained and
reused.

In software engineering domain, the term software complexity
is often defined as “the difficulty of performing tasks such as cod-
ing, debugging, testing and modifying the software” (Zuse, 1991).

3 http://dbpedia.org/.
4 http://www.informatik.uni-trier.de/ley/db/.
5 http://www.foaf-project.org.

http://dx.doi.org/10.1016/j.jss.2009.11.735
mailto:hongyu@tsinghua.edu.cn
mailto:liyf@itee.uq.edu.au
mailto:ibktan@ntu.edu.sg
http://www.cancer.gov/cancertopics/terminologyresources
http://linkeddata.org
http://dbpedia.org/
http://www.informatik.uni-trier.de/ley/db/
http://www.foaf-project.org
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

804 H. Zhang et al./ The Journal of Systems and Software 83 (2010) 803-814

Software metrics (Fenton and Pfleeger, 1998) are designed to quan-
tify software products and processes. In the same spirit, we define
ontology design complexity as the difficulty of performing tasks
such as developing, reusing and modifying the ontology. This paper
addresses the increasing needs for measuring the complexity of
ontology designs by utilizing the concepts of software metrics.

We consider ontology complexity as a profile multidimensional
construct (Law et al., 1998), which is formed as various combina-
tions of dimensional characteristics and cannot be measured di-
rectly using a single metric. Therefore, we propose a suite of
metrics (at both the ontology-level and class-level) to measure dif-
ferent aspects of the design complexity of ontologies. Together,
these metrics help us gain a more complete understanding of
ontology complexity.

Weyuker's criteria (Weyuker, 1988) is a set of properties for
evaluating software metrics. We analyze the applicability of Weyu-
ker’s criteria in the context of ontology and analytically evaluate
our proposed metrics against them.

We have also collected real-world ontologies from public do-
mains to show the characteristics of the proposed metrics and to
evaluate the usefulness of the metrics. By doing so, we seek to
demonstrate the level of rigor required in the development of use-
ful ontology metrics. An automated tool based on the Protégé-OWL
API® has been developed to facilitate metric computation. We also
point out how the proposed metrics can be applied to ontology qual-
ity control. Our proposed metrics are theoretically and empirically
sound, are capable of revealing the internal structure of ontologies,
and are useful for ontology engineering practices.

The rest of the paper is organized as follows: in Section 2 we
introduce the background on complexity measures and related
work. Section 3 introduces the problem of evaluating ontology
complexity and formally defines the graphic-centric representa-
tion of OWL ontologies, for the discussion of complexity metrics.
In Section 4, we describe our proposed metric suite. Sections 5
and 6 give analytical evaluation and empirical evaluation of the
metrics, respectively. Section 7 discusses how the proposed met-
rics can be applied to ontology development practices. Finally, in
Section 8 we conclude the paper and suggest future work
directions.

2. Background and related work

Complexity has been a subject of considerable research. In cog-
nitive psychology, a convenient metaphor treats human cognition
as a computer-like information processor (Lindsay and Norman,
1977). Both of them involve similar concepts such as input/output,
memory, processing power, and critical resources.” Like an infor-
mation processor, it is believed that humans’ problem solving and
other complex cognitive processes have limited capabilities, which
restrict the understanding and development of complex structures.
For example, the seminal works on 7 £ 2 limits (Miller, 1956) and
the size of a memory chunk (Simon, 1974) reveal that a human
can only cope with limited information at a time via short-term
memory, independent of information content. It is also discovered
that the difficulty of a task can be measured by the number of cog-
nitive resources required to perform the task (Sheridan, 1980).

In software engineering domain, researchers and engineers at-
tempt to quantitatively understand the complexity of the software
undertaken and to find the relationships between the complexity
and the difficulty of development/maintenance task. Many soft-
ware complexity metrics have been proposed over the years.

S http://protege.stanford.edu/overview/protege-owl.html.
7 We should note that although we use this metaphor, we are not saying that
human’s brain functions like a Von Neumann computer.

Examples include cyclomatic complexity (McCabe, 1976), coupling
metrics (Fenton and Melton, 1990) and the CK object-oriented
design metrics (Chidamber and Kemerer, 1994). Many researchers
have shown that complexity measures can be early indicators of
software quality. For example, empirical evidence supporting the
role of object-oriented metrics, especially the CK metrics, in deter-
mining software defects was provided in (Basili et al., 1996;
Subramanyam and Krishnan, 2003).

An ontology is a specification of a conceptualization (Gruber,
1993), which can capture reusable knowledge in a domain. In soft-
ware engineering area, object-oriented design also involves the
conceptualization of domain knowledge, producing deliverables
such as class diagrams. It has been shown that object-oriented
modeling languages can be grounded on ontological theory (Op-
dahl and Henderson-Sellers, 2001). There is much similarity be-
tween object-oriented design and ontology development,
suggesting that we may borrow the principles and methods from
software metrics research to design ontology metrics. However,
we cannot apply the metrics originally designed for software com-
plexity to ontology without adaptation. Many software complexity
metrics are based on program control flow or the number of meth-
ods. For example, three of the six CK metrics involves information
about methods, which are not applicable to ontology. Therefore it
is necessary to design a new suite of metrics for measuring com-
plexity of ontologies.

In recent years, various metrics for measuring ontologies were
proposed. For example, Yao et al. suggested three metrics (Yao
et al., 2005) (namely the number of root classes, the number of leaf
class, and the average depth of inheritance tree) to measure the
cohesiveness of an ontology. Kang et al. (2004) proposed an entro-
py-based metric for measuring the structural complexity of an
ontology represented as UML diagram. These efforts only focus
on one or two aspects of structural complexity and lack sound the-
oretical or empirical validations.

Some researchers also proposed integrated frameworks for
ontology measurement. For example, Gangemi et al. (2006) pro-
posed a meta-ontology O” that characterizes ontologies as semiotic
objects. Based on this ontology they identified three types of mea-
sures for ontology evaluation: structural measures, functional
measures and usability-profiling measures. A large number of po-
tential metrics were proposed as well. Some of these metrics can-
not be automatically calculated, limiting their utility. It also did not
provide an empirical analysis for the metrics.

In Wang et al. (2006), a large number (~1300) of OWL ontolo-
gies were collected and statistically analyzed. The main focus of
that work is ontology expressivity (e.g., to which OWL species —
Lite, DL or Full - an ontology belongs) and consistency characteris-
tics. Besides expressivity, an analysis on the shape of ontology class
hierarchy (a graph of subsumptions) was also presented. The
authors compared the morphological changes between the classi-
fied and inferred (as in OWL reasoning) versions of a class hierar-
chy and suggested that it may be useful to determine which
classes are over- or under-modeled. Their work on graph morphol-
ogy of class hierarchies is similar to the intention of our tree impu-
rity TIP metric that will be presented in Section 4.

Vrandeci¢ and Sure (2007) proposed guidelines for creating
ontology metrics based on the notions of “normalization”. Their
work laid out a set of principles for designing stable, semantic-
aware metrics. They proposed five normalization steps, namely:
(i) name anonymous classes, (ii) name anonymous individuals,
(iii) materialize the subsumption hierarchy and unify names, (iv)
propagate instances to deepest possible class or property within
the hierarchy, and (v) normalize properties. The normalization pro-
cess attempts to transform the ontology into a semantically-equiv-
alent form to facilitate the creation of “semantic-aware” metrics.
As we stated previously, the objective of our research is to measure

http://protege.stanford.edu/overview/protege-owl.html

H. Zhang et al./ The Journal of Systems and Software 83 (2010) 803-814 805

the design complexity of ontologies and to evaluate the usefulness
of metrics in ontology quality control. Aggressive normalization
may drastically change the “shape” of an ontology. As a result, met-
rics based on the normalized ontology may not faithfully represent
the complexity of the original one. In fact, in Vrandeci¢ and Sure
(2007), the authors also state that “normalization is not an applica-
ble solution for every metric”, or wrong results could be returned.
Therefore, in this work, we choose to apply minimal normalization
to preserve the original form of ontologies as much as possible. We
only consider the normalization of anonymous classes for some of
the metrics.

Burton-Jones et al. (2005) proposed a metrics suite based on
the semiotic frameworks and demonstrated how the metrics
can be used to assess the usefulness of DAML ontologies for their
semantic retrieval system. Their metrics suite includes measures
for syntactic quality, semantic quality, pragmatic quality, and so-
cial quality. This suite, including metrics such as lawfulness, rich-
ness, relevance and history, are used to assess the “quality” of
DAML ontologies. It covers both the intrinsic properties such as
syntactic correctness of ontological terms and the relationship
the ontology being audited has with its context, e.g., task domain
and other ontologies.

Based on the above analysis, we believe that there is still a
lack of systematic method for measuring the design complexity
of ontologies. In the following sections, we introduce a suite of
structural metrics and evaluate the proposed metrics against
established criteria for validity. We also collect empirical data
from real-world, public ontologies to show the characteristics
and usefulness of the proposed metrics in ontology develop-
ment. The proposed metrics can be integrated into a more
comprehensive metrics suite (such as the one proposed in Bur-
ton-Jones et al., 2005) to measure the overall quality of an
ontology.

3. The Graph-centric representation of ontologies

One may perceive that the larger the file size and the more the
number of classes and properties, the more complex an ontology is.
However, we argue that it is very difficult to measure ontology
complexity with a single metric.

For example, ontology size alone is not a sufficient complexity
measure. Take the NCI Thesaurus ontology® as an example. It is
one of the largest ontologies available (81.5 MB). Another ontology,
the gene ontology®, of less than half of its size (39.2 MB), has more
than twice the number of nodes than the NCI Thesaurus ontology
has. Apart from physical size, very often neither can we judge the
complexity of ontology design solely by counting the number of
classes and properties. Instead, a set of metrics shall be used to
measure different aspects of the complexity in order to achieve a
more complete understanding. In this research, we have derived
a set of metrics based on the graph-centric representation of
ontologies.

For the discussion of ontology complexity metrics, we define a
graph-centric view for OWL ontologies. Specifically, an ontology
can be viewed as a directed graph G = (N,P,E), where N is a set
of nodes representing classes and individuals; P is a set of nodes
representing properties; and E is a set of edges representing prop-
erty instances and other relationships between nodes in the graph
G. ECN x P x N. N includes both N, (named classed and individu-
als) and N, (anonymous classes and individuals). P includes both P,
(user-defined properties) and P, (OWL/RDFS properties such as
rdfs:subClassOf and owl:equivalentClass).

8 http://www.nci.nih.gov/cancerinfo/terminologyresources.
9 http://www.geneontology.org/.

7(A) = A, where A € N (1)
7(a) = a,where a € N (2)
7(Q) = Q,where Q € P (3)
7(— C) =_:0,where _:0 € N, and (4)
(-:0,rdfs:subClass0f, owl:Thing) € F and
(~:0,0wl:complementOf, 7(C)) € £
7(CM D) =_:1,where _:1 € N,and (5)
(-:1,rdfs:subClass0f, owl:Thing) € F and
(=:1,rdfs:subClass0f, 7(C)) € E and
(-:1,rdfs:subClass0f,7(D)) € F
7({a,b,...}) = _:2,where _:2 € Nyand (6)

(~:2,rdfs:subClass0f, owl:Thing) € E and
(7(a),rdf:type,_:2) € E and
(7(b), rdf:type,_:2) € E and...
= _:3,where _:3 € N, and (7)
(~:3,rdfs:subClass0f, owl:Thing) € F and
(-:3,7(Q), 7(C) € E
= _:4,where _:4 € N, and (8)
(~:4,rdfs:subClass0f, owl:Thing) € E and
(+4,7(Q),7(C) € B
7(Q : a) = _:5,where _:5 € N, and 9)
(~:5,rdfs:subClass0f, owl:Thing) € E and
(<:5,7(Q),7(a)) € E

7(3Q.C)

(¥ Q.0)

Fig. 1. Translation rules from OWL descriptions to the graph-centric
representation.

T(AC D) = (7(A), rdfs:subClass0f, 7(D)) € E (10)
7(A= D) = (7(A),owl:equivalentClass,7(D)) € E (11)
T(CND=_1)=(r(C),owl:disjointWith, 7(D)) (12)
T7(S C Q) = (7(S5), rdfs:subProperty0f, 7(Q)) € E (13)
7(>1Q C C) = (7(Q), rdfs:domain, 7(C)) (14)
T(TEVQ.C)=(7(Q),rdfs:range, 7(()) (15)
T(a € C) = (7(a),rdf: type,7(C)) € E (16)
7((a,b) € Q) = (7(a), 7(Q),7(b)) € E (17)
7(a =b) = (7(a),owl:samels, (b)) € E (18)
7(a # b) = (7(a),owl:differentFrom,7(b)) € E (19)

Fig. 2. Translation rules from OWL axioms to the graph-centric representation.

Formally, we define the translation function T from OWL con-
structs to G in Figs. 1 and 2. A and B represent named classes; C
and D represent potentially complex (OWL class descriptions and
restrictions) classes; a and b represent individuals; Q and S repre-
sent properties; and _:0, _:1, etc. represent anonymous classes in
N,. For brevity reasons, OWL abstract syntax (Horrocks et al.,
2003) is used.

Specifically, rules 1 and 2 state that named classes and individ-
uals are translated into nodes in N of G. Rule 3 state that named
properties are translated into P of G. Rules 4-9 specify how anon-
ymous class descriptions and restrictions are translated: as nodes
such as _:n in N, of G, with the translation function t recursively
applied to the inner language constructs. Rules 10-19 specify
how OWL axioms and assertions are translated, in a similar fash-
ion. Translation rules for other OWL descriptions and axioms can
be similarly defined and are omitted here.

The inheritance hierarchy of an ontology can be described as
G = (N',P,E), where N' is the set of nodes representing classes,
P’ is the RDF property rdfs:subClassOf, and E' is the set of edges

http://www.nci.nih.gov/cancerinfo/terminologyresources
http://www.geneontology.org/

806 H. Zhang et al./ The Journal of Systems and Software 83 (2010) 803-814

LivingThing T T

Animal T LivingThing
Animal CV eats.LivingThing
Person C Animal

Carnivore C Animal
Carnivore CV eats.Animal
Animal M Plant = L

Plant C LivingThing
Grass C Plant

Tree C Plant

Cow C Animal

Herbivore C Animal
Herbivore CV eats.Plant

Fig. 3. The OWL axioms in the “Animal” ontology.

eats..../ Living Thing |

eas._/ Animal | Plantj\ eats

owl:disjointWith

\f Carnivore \ { Herbivore |

Fig. 4. The Animals ontology represented as a graph.

representing the inheritance relationship (rdfs:subClassOf)
among classes.!°
A number of points are worth discussion.

e The graph-centric representation is not a lossless translation;
nor does it preserve the OWL semantics. It is meant to represent
the ontology structure with minimal “normalization” so as to
represent the structure of the original ontology as faithfully as
possible.

e Nincludes a special class owl:Thing, which is added for unifor-
mity in the calculation of inheritance-related metrics. More dis-
cussions will be presented when we discuss class-level metrics.

e Every top-level class node C € N generates an additional edge:
(C,rdfs : subClassOf,owl : Thing) € E, if it is not already
present.

e Anonymous OWL classes (e.g., class descriptions such as
owl:unionOf, and owl:intersectionOf; and class restric-
tions such as owl:someValuesFromand owl:allValuesFrom)
add to the expressivity of ontologies. Hence, anonymous classes
are represented in N, of G and are included in the calculation of
relevant metrics.

e Only OWL individuals used in the definition of other classes
(e.g., through the use of owl:oneOf enumeration construct)
are included in N, and hence the calculation of complexity
metrics.

e Annotation-related entities are not considered in G and the met-
ric suite.

As an example, Fig. 3 shows part of the OWL axioms from the
“Animals” ontology that is adapted from (Rector et al., 2005).
Fig. 4 shows the translation of the axioms into the graph represen-
tation. Unlabeled edges represent rd fs:subClassOf relationships
among classes. The three nodes _:0, _:1 and _:2 are created, repre-

10 We assume that an inheritance hierarchy is a directed, acyclic graph. For
inheritance hierarchy that contains cycles, we suggest identifying equivalent classes
and removing the cycles, thus transforming the hierarchy into a semantic equivalent
acyclic graph.

senting anonymous classes used as value restrictions in the defini-
tion of other classes. Note that all top-level classes have
owl:Thing (T in Fig. 4 at the top) as their super class, as stated
above.

In this paper, we use the graphical representations of ontologies
(such as the one shown in Fig. 4) to help define some complexity
measures intuitively. We classify these metrics into two sets: one
for measuring the overall design complexity of an ontology (ontol-
ogy-level metrics), and the other for measuring the complexity of
internal structure (class-level metrics). The larger the metric value,
the more the cognitive resources are required to understand and
maintain the ontology, therefore the greater the complexity is.
We will formally present the proposed suite of complexity metrics
in the next section.

4. The proposed metrics for measuring complexity of ontology
4.1. Ontology-level metrics

We propose four ontology-level metrics (namely SOV, ENR, TIP,
and EOG) to measure complexity of an ontology design:

4.1.1. Size of vocabulary (SOV)

Definition. SOV measures the amount of vocabulary defined in an
ontology. Given a graph representation G = (N, P, E) of an ontology,
SOV is defined as the cardinality of the name entities N, and P, in
G:

SOV = |Ny| + |Pn|

where N, representing named classes and individuals, and P, repre-
senting user-defined properties.

Rationale. An ontology contains structured vocabulary, includ-
ing named classes (representing a collection of individuals), prop-
erty (representing a collection of pairs of individuals/literals), and
individuals (instances of classes). SOV measures the complexity
of an ontology by counting the total number of named entities.
In an ontology graph G, SOV is the total number of N, and P, de-
fined by the ontology. The greater the SOV, the greater the size of
an ontology, and the greater the time and effort that are required
to build and maintain the ontology. Note that we choose not to in-
clude anonymous classes (N,) and OWL/RDF default properties (P,)
into the calculation of SOV as they do not introduce new vocabular-
ies to an ontology.

Example. For the Animals ontology described in Section 3, the SOV
is 11 (10 named classes and 1 property).

4.1.2. Edge node ratio (ENR)

Definition. For an ontology graph G = (N, P, E), the ENR is defined
as follows:

|E|
ENR = —

IN|
as the division of the number of edges (|E|) by the number of nodes
(IN]) (including both named and anonymous) in G.

Rationale. ENR measures the connectivity density since it increases
as more edges are added between nodes (classes and individuals).
The greater the ENR, the greater the complexity of an ontology.

Example. For the Animals ontology described in Section 3, the
number of nodes is 13 and the number of edges is 19, thus ENR is
1.46.

H. Zhang et al./ The Journal of Systems and Software 83 (2010) 803-814 807

4.1.3. Tree impurity (TIP)

Definition. TIP measures how far an ontology’s inheritance hier-
archy G' = (N',P',E') deviates from being a tree. It is defined as:

TIP = |E| — [N'| + 1

where |E'| is the number of rdfs:subClassOf edges and |N'| is the
number of nodes (including both named and anonymous) in an
ontology’s inheritance hierarchy.

Rationale. A well-structured ontology is composed of classes
organized through the inheritance relationship. Single inheritance
leads to a “pure” tree hierarchy, while multiple inheritances allow
a subclass to inherit from more than one super class, making
inheritance hierarchy a graph. TIP measures the degree of tree
impurity. The value of TIP can be seen as the number of extra edges
that an inheritance hierarchy differs from a tree structure. A tree
with n nodes always has n — 1 edges, therefore TIP = 0. The greater
the TIP, the more an ontology’s inheritance hierarchy deviates
from a pure tree structure, and the greater the complexity of an
ontology.

Note that in the calculation of TIP, we take into consideration
the top class owl:Thing and anonymous classes created during
the translation process. As we stated in Section 3, in the transla-
tion, each class node C with no explicit superclass nodes will have
an edge added for it: (C,rdfs: subClassOf,owl : Thing). Such
an addition ensures that TIP is always non-negative.

Example. For the Animals ontology described in the previous
section, the classes are not organized through single inheritance,
evident with the presence of OWL class axioms. Therefore, in the
inheritance hierarchy |E'| = 15 and |N'| = 13, thus TIP = 3.

4.1.4. Entropy of graph (EOG)

Definition. The EOG is an entropy measure of the ontology graph.
It is defined as:

EOG = — Zp(i)logzp(i)

where p(i) is the probability of a node (including both named and
anonymous) having i edges (both incoming and outgoing degrees).

Rationale. EOG is a metric of uncertainty, which measures
how diverse (uncertain) the structure of an ontology is. The max-
imum value EOGq. = log,n is obtained for p(i)=1/n, and the
minimum value EOG;, = 0 is obtained when all nodes have the
same degree distribution. Lower EOG indicates the existence of
more structural patterns, therefore the ontology is more regular
and less complex.

Example. For the Animals ontology described in the previous
section, the probability of a node having one, three, four and seven
degrees are 30.77%, 38.46%, 23.08% and 7.69%, respectively, there-
fore EOG = 1.83.

4.2. Class-level metrics

We also propose four metrics (namely NOC, DIT, CID, and COD)
to measure the design complexity of an ontology at the class-level:

4.2.1. Number of children (NOC)

Definition. for a given class C, NOC measures the number of its
immediate children in the ontology inheritance hierarchy G, as
follows:

NOCc = #{DID € N'A (D, rdfs :
where Ce N

subClassOf,C) € E'},

where symbol # denotes the cardinality of {D|DeNA
(D, rdfs : subClassOf,C) € E'}, which is the set of all immediate
child class of class C.

Rationale. The NOC metric is the same as the NOC metric intro-
duced by Chidamber and Kemerer (1994). NOC is the number of
subclasses that directly inherit from a given class. As inheritance
is a form of reuse, the greater the NOC value, the greater the reuse.
A greater NOC value also indicates that, if a change to this class is
made, more subclasses may be affected and more efforts are re-
quired to test and maintain the subclasses.!!

Example. For the animals ontology described in Section 3, the NOC
value for class Plant is 2 and for class Animal is 4.

4.2.2. Depth of inheritance (DIT)

Definition. DIT measures the length of the longest path from a
given class C to the root class in an ontology inheritance hierarchy
G.

Rationale. The DIT metric is the same as the DIT metric intro-
duced by Chidamber and Kemerer (1994). DIT is a measure of num-
ber of ancestor classes that can potentially affect the class. A
greater DIT value shows that the class resides deeper in the inher-
itance hierarchy and reuses more information from its ancestors. A
greater DIT value also indicates that the class is more difficult to
maintain as it is likely to be affected by changes in any of its
ancestors.

In the calculation of DIT, the class hierarchy G’ is traversed only
once, in a top-down and depth-first manner, with ow1:Thing as
the starting root node. For each class, its visited descendent classes
are recorded for cycle detection so that the traversal is guaranteed
to terminate.

Example. For the Animals ontology described in Section 3, the DIT
values for the Plant class and the Animal class are both 2.

4.2.3. Class in-degree (CID)

Definition. For a given class C, CID measures the number of edges
pointing to a node in an ontology graph G:

CIDc = #{(D,Q,C) e EDe NAQ € P}, where CeN

Rationale. The value of in-degree represents the usage of a gi-
ven class by other nodes. The higher the CID value, the more the
number of nodes dependent on it. Therefore, changes to this class
may affect more classes.

Example. For the Animals ontology described in Section 3, the CID
value for class P1ant is 3 and for class Animal is 5.

4.2.4. Class out-degree (COD)

Definition. For a given class C, COD measures the number of edges
leaving C in the ontology graph G:

COD¢ = #{(C,Q,D) e EDe NAQ € P}, where CeN

" Currently for NOC we only consider immediate subclasses. We should note that
the impact of a class may propagate to its indirect subclasses too. Understanding and
measuring the propagation of change impact will be an interesting future work.

808 H. Zhang et al./ The Journal of Systems and Software 83 (2010) 803-814

Rationale. The value of out-degree represents the number of
nodes referred to by a given class. The higher the COD value, the
more the number of classes a class depends on. Therefore, if any
of these nodes are changed, this class needs to be re-examined.

Example. For the Animals ontology described in the previous
section, the COD value for the P1lant class is 1 and for the Animal
class is 2.

5. Analytical evaluation of the complexity metrics

Weyuker has proposed a set of properties for evaluating the
usefulness of software complexity metrics (Weyuker, 1988).
Although some researchers offered critique (especially on its prop-
erty 9) (Zuse, 1991; Cherniavsky and Smith, 1991; Gursaran and
Roy, 2001; Zhang and Xie, 2002), these properties do provide for-
mal criteria for evaluating the behavior of a metric and are there-
fore widely adopted (Chidamber and Kemerer, 1994; Harrison,
1992). For a software complexity metric M, Weyuker’s properties
are paraphrased as follows:

Property 1. The complexity measure should not rate all programs as
equally complex. Formally, there are programs P and Q for which
M(P) # M(Q).

Property 2. There are only finitely many programs of a given com-
plexity. Formally, if c is a non-negative number, there are only finitely
many programs P for which M(P) = c.

Property 3. There exist two different programs of the same complex-
ity. Formally, there are distinct programs P and Q such that
M(P) = M(Q).

Property 4. Two different programs which have the same functional-
ity need not have the same complexity. Formally, there are function-
ally equivalent programs P and Q such that M(P) # M(Q).

Property 5. The complexity of a program segment should be less than
or equal to the complexity of the whole program. Formally, for all pro-
grams P and Q, the following must hold: M(P) < M(P+ Q) and
M(@Q) < M(P+Q).

Property 6. The resulting complexity of the composition of two pro-
grams P and R is not necessarily the same as the composition of pro-
grams Q and R, even though P and Q have the same complexity.
Formally, there exist programs P, Q, and R such that M(P) = M(Q)
and M(P +R) # M(Q +R).

Property 7. If the statements within a program are permutated, the
complexity of the resulting program is not necessarily equal to the
complexity of the original program. Formally, there are programs P
and Q such that Q is formed by permuting the order of the statements
of P and M(P) # M(Q).

Property 8. Renaming has no effect on the measure. Formally, if P is a
renaming of Q, then M(P) = M(Q).

Property 9. The complexity of the composition of two programs may
be greater than the sum of the complexities of the two taken sepa-
rately. Formally, there exist programs P and Q such that
M(P) + M(Q) < M(P + Q).

5.1. Evaluation of the proposed metrics

Although Weyuker’s properties were originally proposed to
evaluate software metrics, we analyze the applicability of these

properties in the context of ontology and analytically evaluate
our proposed metrics against them. Of Weyuker’s nine proper-
ties, six will be dealt with only briefly here as the proof is
obvious.

Obviously, for two ontologies P and Q, they could contain dif-
ferent sets of classes and properties, resulting in different graph
representations and different measurement values for SOV, ENR,
TIP, EOG, NOC, DIT, CID and COD, therefore, Property 1 is satisfied
by all metrics. For an application domain, there are only a finitely
many number of classes and properties, therefore there are only a
finitely many number of ontologies with the same measurement
values, so Property 2 is met by all metrics. It is always possible
that two different ontologies having the same size or the same
graphical structure, therefore satisfying Property 3. Concepts in
a domain could be designed/organized in different ways (e.g.,
see the normalization examples as illustrated by Rector, 2002),
leading to different measurement values, therefore Property 4 is
satisfied.

The original intent of Property 7 was to ensure that the mea-
surement value changes with the permutation of statements in
programs. This property pertains to traditional programming lan-
guages. As ontology languages RDFS and OWL are declarative lan-
guages, the change in the order of the elements does not affect the
semantics of the ontology nor its graphical representation. Hence,
the measurement values are not affected. Therefore, Property 7 is
not satisfied as it is not applicable to ontologies.

The eighth property states that when the name of the ontology
(or its elements) changes, the metric value should remain un-
changed. As all proposed metrics are independent of the name of
the ontology (or elements), they also satisfy this property.

For each of the metrics, we will provide a detailed analysis for
the remaining three properties (Properties 5, 6 and 9) below.

5.1.1. Evaluation of ontology-level metrics

SOV. Let P and Q be two ontologies, which have the amount of
vocabulary p and q, respectively (i.e., M(P) =p and M(Q) = q).
Combining P and Q will yield a single ontology (P + Q) with vocab-
ulary size p + q — o, where « is the amount of vocabulary P and Q
have in common. Clearly 0 <« <p and 0 <« < g, therefore,
M(P) < M(P+ Q) and M(Q) < M(P + Q), satisfying Property 5. As
o = 0,M(P)+M(Q) = M(P+ Q) for any P and Q, thus Property 9
is not satisfied.

ENR. Let P and Q be two ontologies, P has n, nodes and e, edges,
and Q has n; nodes and e, edges, then M(P)=e,/n, and
M(Q) = eq/ngy. Assuming P and Q are composed at the root node
and there is no further overlapping between P and Q, then
MP+Q)= (e, +eq)/(ng+n,—1), and also assume that ng > 1
and n, > 1, thus: M(P + Q) = (e, + €q)/ (g + 1p).

Again assuming M(P) < M(Q), i.e., e,/n, < eq/ng, we can infer
that: eyng <eqn, = epng +eqng < eqnp +eqng = ((ep +eq)/(Ng+
n,)) < (eq/ng) = M(P+ Q)< M(Q) therefore, Property 5 is not
satisfied.

Let P and Q be two ontologies with the same ENR values (i.e.,
ep/n, = eq,Ng). For P and Q, there exists an ontology R such that it
has « number of nodes and g number of edges in common with
P and Q, respectively. Let R has n, nodes and e, edges, therefore
(ep+e —p)/(ny+n —o) # (eg+ e —p)/(ng+n, —a) if e, # e,
therefore M(P + R) # M(Q + R), satisfying Property 6. For Property
9, it can be proved that ((e, +e4)/(ng+ny)) < (eq/Ng +€p/np),
therefore M(P + Q) < M(P) + M(Q) for any P and Q, hence Property
9 is not satisfied.

TIP. Let P and Q be two ontologies with TIP values p and q,
respectively. Combining P and Q will yield a single inheritance
hierarchy, which has TIP value p + q — o, where o = (the number
of overlapping edges - the number of overlapping nodes + 1).
Clearly, 0 < o < p and 0 < « < g, therefore, M(P) < M(P + Q) and

H. Zhang et al./ The Journal of Systems and Software 83 (2010) 803-814 809

M(Q) < M(P+Q) for any P and Q, satisfying Property 5. As
o = 0,M(P)+M(Q) = M(P + Q), thus Property 9 is not satisfied.

Let P and Q be two ontologies and M(P) = M(Q) = n, there exists
an ontology R that overlaps P and Q. The number of overlapping
nodes could be different, resulting different hierarchical structures
after composition, therefore M(P + R) # M(Q + R) and Property 6
is satisfied.

EOG. Let P and Q be two ontologies. Assume both P and Q con-
tain three nodes ny,n,, and ns3. n; and n, have o degrees in P and
B degrees in Q (o # B). n3 has p degrees in P and o degrees in Q.
Therefore, M(P) = M(Q) as P and Q have the same degree distribu-
tion pattern. Clearly after composing P and Q, the resulting ontol-
ogy may have o + 8 degrees for each of the three nodes, making
M(P+ Q) =0, thus M(P + Q) < M(P) and M(P + Q) < M(Q), Prop-
erty 5 is not satisfied. Now, considering an ontology R which con-
tains nodes n;,n, and n; with degrees 1, 1, and k, respectively.
After composing P and R, the resulting ontology may have k + 1 de-
grees for each of the three nodes. After composing Q and R, the
resulting ontology may have three nodes with degrees 2, 2, and
k+1, respectively. Clearly, M(P+R) # M(Q +R) even though
M(P) = M(Q), satisfying Property 6.

Let P and Q be two ontologies. Assume P contains three nodes
ni,ny, and n3 with the same degree k, and Q contains two nodes
n; and n; with the same degree 1. Therefore, M(P) = M(Q) = 0.
After composing P and Q, the resulting ontology may have three
nodes n;,np, and ns with degrees k+ 1,k k+ 1, respectively.
Therefore, M(P) + M(Q) < M(P + Q), satisfying Property 9.

5.1.2. Evaluation of class-level metrics

NOC. The NOC metric proposed in this paper is the same as the
CK NOC metric, which is proved to satisfy Properties 5 and 6. Prop-
erty 9 is not satisfied. We refer the reader to Zuse (1991) for the
detailed analytical evaluation of this metric.

DIT. The DIT metric proposed in this paper is the same as the CK
DIT metric, which is proved to satisfy Properties 5 and 6. Property 9
is not satisfied. We refer the reader to Zuse (1991) for the detailed
analytical evaluation of this metric.

CID. Let P and Q be two class in an ontology, which have the
number of in-degrees p and ¢, respectively (i.e., M(P) =p and
M(Q) = q). Combining P and Q will yield a single class (P + Q) with
in-degree p + q — o, where « is the number of incoming edges that
P and Q have in common. Clearly 0 < o < p and 0 < « < q, there-
fore, M(P) < M(P+ Q) and M(Q) < M(P + Q), satisfying Property
5.As o = O,M(P) + M(Q) = M(P+ Q) for any P and Q, thus Prop-
erty 9 is not satisfied.

Let P and Q be two classes and M(P) = M(Q) = n, there exists a
class R such that it has oo number of incoming edges in common
with P and 8 in common with Q, where o # . Let M(R) =r, then
M(P+R)=n+r—o and M(Q+R)=n+r—p, therefore M(P+
R) # M(Q + R) and Property 6 is satisfied.

COD. Let P and Q be two classes in an ontology, which have the
number of out-degrees p and q, respectively (i.e., M(P) =p and
M(Q) = q). Following the reasoning for the CID metric above, we
can prove that for COD, the Properties 5 and 6 are satisfied, and
the Property 9 is not satisfied.

5.2. Summary of the analytical evaluation

Table 1 shows the summary of analytical evaluation results. All
the metrics satisfy the majority of the properties presented by
Weyuker, with the two strong exceptions Properties 7 and 9. As
discussed previously, Property 7 is not applicable to ontology met-
rics due to the declarative nature of ontology languages.

Weyuker's Property 9 is not satisfied by seven metrics (all ex-
cept EOG). Property 9 implies that the interactions between pro-
grams can increase complexity. This is the property about which

Table 1
The summary of analytical evaluation results.

Prop. Ontology-level metrics Class-level metrics

Sov ENR TIP EOG NOC DIT CID CoD

1 Yes Yes Yes Yes Yes Yes Yes Yes
2 Yes Yes Yes Yes Yes Yes Yes Yes
3 Yes Yes Yes Yes Yes Yes Yes Yes
4 Yes Yes Yes Yes Yes Yes Yes Yes
5 Yes No Yes No Yes Yes Yes Yes
6 Yes Yes Yes Yes Yes Yes Yes Yes
7 No No No No No No No No

8 Yes Yes Yes Yes Yes Yes Yes Yes
9 No No No Yes No No No No

many researchers have raised questions (Gursaran and Roy,
2001; Zhang and Xie, 2002). In our study, failing to satisfying this
property by the seven metrics indicates that unlike programs, the
complexity of ontologies/classes is reduced after individual ontol-
ogies/classes are composed.

Other violations of Weyuker’s properties are in the cases of ENR
and EOG on Property 5. Property 5 implies that the complexity
should be increased monotonically. The ENR and EOG measures
show that the complexity is subject to change during the develop-
ment of an ontology, which is reasonable when we view the com-
plexity in terms of structure, instead of size. Interestingly, other
researchers also observed the exceptions in applying this property
(Zuse, 1991).

6. Empirical evaluation of the complexity metrics

We have applied the proposed metrics to measure a set of
real-world ontologies collected from online sources (as shown
in Table 2). The Jambalaya'? tool was used to visualize the graph-
ical representation of the ontology. As an example, Fig. 5 below
shows the ontology graph for the Full-Galen ontology (Rector
et al., 1993), which describes comprehensive anatomy and drug re-
lated terms.

To facilitate automated data collection, we have also developed
a metric tool based on the Protégé-OWL!? Java APL The tool we
developed traverses the graph of each ontology, collects and stores
relevant information and finally calculates the metrics.' In this sec-
tion, we briefly discuss some observations from the empirical
analysis.

6.1. Evaluation of ontology-level metrics

Table 3 shows the measurement values for the collected ontol-
ogies. The numbers marked with () indicate the largest measure-
ment values among the studied ontologies.

The SOV values range from 52 (the Amino-acid ontology) to
134K (the Go_daily-termdb ontology), showing different amounts
of vocabulary used. Although the Amino-acid ontology has the
smallest amount of vocabulary, it has the highest edge-node den-
sity (ENR) (about 3 edges associated with one node), therefore is
more complex when ENR is considered. The high ENR value also
indicates that further modularization is needed to ease the under-
standing and maintenance efforts. The empirical results also show
that some ontologies are designed with strict single inheritance
(with TIP = 0), while others adopt multiple inheritance and their
inheritance hierarchy deviates heavily from a pure tree structure
(e.g., TIP=33136 for the NCI Thesaurus ontology). The ontology

12 http://www.thechiselgroup.org/jambalaya.
13 http://protege.stanford.edu/overview/protege-owl.html.
14 Available for download at:http://www.itee.uq.edu.au/liyf/lontComplexity.

http://www.thechiselgroup.org/jambalaya
http://protege.stanford.edu/overview/protege-owl.html
http://www.itee.uq.edu.au/liyf/ontComplexity

810 H. Zhang et al./ The Journal of Systems and Software 83 (2010) 803-814

Table 2
The descriptions of the collected ontologies.
Ontology Description Version Size
(KB)
AllMonet An ontology for mathematical algorithms 2005-06- 756
07
Amino-acid An ontology about amino acids 1.2 91
Biopax-level2 Biological pathways exchange language 1.0 118
Bio-zen An ontology for life sciences 1.01 188
CL An ontology for cell types 1.26 784
Full-Galen The full GALEN ontology of medical terms, anatomy and drugs translated into OWL 2006-09- 20100
12
Go_daily-termdb The Gene Ontology project, which provides a controlled vocabulary to describe gene and gene product attributes 4.270 39200
in any organism
MGED An ontology for microarray experiments in support of MAGE v.1 1.3.1.1 556
nciOntology National Cancer Institute’s ontology of cancer 03.09d 32800
NCI Thesaurus NCI Thesaurus, a controlled vocabulary in support of NCI administrative and scientific activities 07.04e 81500
NMR NMR-instrument specific component of metabolomics investigations 0.1 124
OBI Ontology for Biomedical Investigations 0.6.7 104
Parkinsons disease An ontology about Parkinsons disease n/a 13
Po Protein ontology 2.0 114
ProPreO A comprehensive Proteomics data and process provenance ontology 0.5 229
SBO The Systems Biology Ontology, a controlled vocabulary tailored specifically for Systems Biology problems, 2006-10- 247
especially in the context of computational modeling 15
Semweb-glossary A glossary of information about the web 2007-10- 426
17
Snpontology_full A domain representation of genomic variations 14 67
STC An ontology about space-time Coordinates 1.3 188
Swpatho2 Semantic Web for Pathology 2006-02- 166
20
tambis A biological science ontology developed by the TAMBIS project 2006-09- 214
27
Table 3
The measurement values of ontology-level metrics
Ontology sov ENR TIP EOG
AllMonet 2065 1.01 52 1.47
Amino-acid 52 3.10() 200 1.56
Biopax-level2 111 1.48 69 254
Bio-zen 263 1.29 89 2.74()
CL 2616 1.23 453 1.49
Full-Galen 24092 1.68 12414 221
Go_daily-termdb 134142() 1.13 13981 0.97
MGED 1029 1.35 226 2.29
nciOntology 27723 1.79 19165 | 2.42
NCI Thesaurus 58741 1.79 33136() 2.13
NMR 326 1.05 0 1.62
OBI 234 1.07 0 1.85
Parkinsons-Disease 86 0.74 0 1.86 .
. 211 0.92 62 237 Fig. 5. The ontology graph of the Full-Galen ontology.
ProPreO 478 1.38 144 2.37
SBO 331 1.15 46 2.14
iﬁ;ﬁf;fgliijﬁy 152525 H; 62322 ;i; 6.2. Evaluation of class-level metrics
STC 549 0.79 39 1.74
Swpatho2 628 1.21 100 1.69 Table 4 shows the collected data for the class-level metrics. For
tambis 493 1.44 109 1.92

Go_daily-termdb has the most regular structure as it has the small-
est value of EOG. While the structure of Bio-zen ontology is most
irregular, therefore it is “more complex” if EOG is considered. In
summary, the measurement values in Table 3 show that the ontol-
ogies may be “more complex” in one aspect but “less complex” in
other aspects. Through the measurement, we can achieve a more
complete understanding of the complexity of theses ontologies.
Moreover, note an interesting comparison between the NCI
Thesaurus ontology and the Go_daily-termdb ontology. The former
is more than double in terms of file size than the latter. However,
the latter has the largest SOV (twice that of the former) among all
the ontologies we evaluated. This reiterates our point that a single
metric is not sufficient to analyze the complexity of ontologies.

all metrics, the minimum measurement value is O so we omit the
Minimum column in Table 4. The maximum measurement values
are much larger than the median (Med) and third-quartile (Q3) val-
ues, suggesting that the distributions of the metric data (except
DIT) are highly skewed - that most of the ontology classes have
small measurement values with a few have large values. For
NOC, this means that the classes in general have few immediate
children and only a small number of classes have many immediate
subclasses. For CID and COD, the skewed distributions mean that
many classes refer to (or are referred to by) a few other classes,
while a small number of classes refer to (or are referred to by) a
large number of other classes. As an example, Table 5 shows the
top 10 classes in the Full-galen ontology that have the largest
CID and COD values.

The classes with large CID values indicate that more classes are
depending on them, therefore special cares need to be taken when

H. Zhang et al./ The Journal of Systems and Software 83 (2010) 803-814 811

Table 4

The descriptive statistics of the metrics data at the class-level.
Ontology NOC DIT CID COD

Med Q3 Max Med Q3 Max Med Q3 Max Med Q3 Max

AllMonet 0 0 154 3 5 8 0 0 154 1 1 4
Amino-acid 0 1 20 3 3 3 2 11 38 2 18.5 30
Biopax-level2 0 1 11 3 3.5 6 0 2 11 4 6 13
Bio-zen 0 1 19 6 7 9 1 2 19 1.5 3 12
CL 0 1.25 67 8 10 15 0 2 67 1 2 6
Full-Galen 0 1 1492 9 12 25 1 2 1694 1 2 95
Go_daily-termdb 0 1 1121 6 8 15 0 2 1121 1 2 7
MGED 0 0 31 5 7 9 1 1 32 1 3 12
nciOntology 0 1 2761 8 10 19 0 1 2761 1 2 24
NCI Thesaurus 0 1 2633 7 9 17 0 2 3390 1 2 31
NMR 0 0 22 6 6 8 0 1 22 1 1 5
OBI 0 1 38 4 6 9 0 2 38 1 1 5
Parkinsons-Disease 0 1 7 3 5 9 0 1 7 1 1 1
po 0 1 8 4 4 6 1 3 13 3 4.5 8
ProPreO 0 2 25 6 7 8 1 2 27 1 2 5
SBO 0 2 18 5 6.75 8 0 2 18 1 1 3
Semweb-glossary 0 1 180 12 14 19 0 1 180 1 2 5
snpontology_ full 0 1 12 2 3 4 0 2 13 1 2 6
STC 0 1 36 3 4 7 0 1 36 1 1 7
Swpatho2 0 0 30 1 2 4 0 0 40 1 1 3
tambis 1 1 51 3 4 8 1 3 162 1 2 14

Table 5

The top 10 Full-Galen classes that have largest CID and COD values.

CID NAMEDActiveDruglngredient, BodyStructure, pathological, Device, Level, Pathological Phenomenon, nonNormal, mirrorlmaged, ClinicalAct,InflammationLesion
COD AbdominalCavity, Face, Skull, Neck, CranialCavity, Knee, PelvicCavity, Thigh, Heart, Orbit

changes to these classes are made as the changes may be propa-
gated to a large proportion of the ontology. The classes with large
COD values indicate that more inputs from other classes are re-
quired to understand these classes, therefore more learning and
maintenance efforts need to be allocated.

For the DIT, the median values range from 1 to 12, which are
close to the Q3 and max values. These values represent a relatively
less skewed distribution, indicating good adoption of taxonomy
principles. The ontologies are designed into hierarchies via the
inheritance relationship.

The metric data of NOC, DIT, CID and COD can help ontology
engineers identify potential problematic areas. For example, in
the ontology “nciOntology”, we find that one class (the Chemother-
apy_Regimen class) has NOC value 2761. A closer look at the class
shows that none of its 2761 subclasses has subclasses of its own.
This suggests that the designer may not be following good classifi-
cation principles when designing these classes. These classes
should be further examined during review meetings, which may
lead to possible re-design/re-structure of the ontology.

To further analyze the distribution of metric data in large-scale
ontologies, we sort the classes in descending order (from the larg-
est value to the smallest value), and plot the value against its rank
on a log-log diagram. As an example, Fig. 6 below shows the distri-
butions of the NOC, DIT, CID, and COD data for the Full-Galen ontol-
ogy. We can see that all distributions (except DIT) have “long tails”,
indicating most of the data have smaller values. The distributions
of NOC, CID and COD form a straight line in log-log diagrams, indi-
cating the power law behavior (Newman, 2005), that is, the distri-
bution of the metric data can be described by the following
equation:

f=a—

where fis the measurement value of a class, r is the rank of the class
when the values are sorted in descendant order, C is a constant and

a is the exponent of the power law. Taking the logarithm on both
sides of the above equation, we get:

In(f) = In(C) — aln(r)

So a power law distribution is seen as a straight line on a log-log
plot. The slope of the line is —a and the intercept is In(C). Table 6
shows the power law parameters for the Full-Galen, Go_daily-term-
db and NCI Thesaurus ontologies. The corresponding R* values
range from 0.74 to 0.96, indicating good fitness of the data (with
significance value 0.000).

Power law is a universal law that is behind many natural and
social phenomena, such as earthquake magnitudes, income distri-
bution and word frequencies in a text (Barabasi and Bonabeau,
2003). Our study shows that some properties of large ontologies
also follow power law distribution. One possible explanation of
this behavior is the “Preferential Attachment” principle (Barabasi
and Albert, 1999), which says that new nodes are more likely to
be attached to the more “important” nodes that already have many
attachments. This principle also applies to ontology construction,
as new knowledge is often derived from existing knowledge that
are well understood and established, thus generating the “scale-
free” ontology graph. More implications of the power law behavior
in ontology development remain to be studied.

7. Possible applications of the metrics to ontology engineering

Using the four proposed ontology-level metrics, ontology engi-
neers could achieve a better understanding of the overall com-
plexity of the ontology. For example, by examining the SOV and
ENR values, the ontology engineers can check if the ontology un-
der development is too large and if further modularization is
needed. By means of the TIP metric, the ontology engineer can
check if the design of the ontology follows good classification
(or object-oriented) principles. Through the EOG metric, the

H. Zhang et al./ The Journal of Systems and Software 83 (2010) 803-814

100 4
$.
=0
o |
*
*
] *
1 -—
1 10 100 1000 10000 100000
Class
100 ¢
oo‘.'~
8 10
[&]
-
-_—
——
1 =
1 10 100 1000 10000 100000
Class

Fig. 6. The distribution of metrics data for the Full-Galen ontology (classes are sorted by measurement values).

812
10000
1000 |
-
.
Q 100
o
=z
10
1 — -
1 10 100 1000 10000 100000
Class
10000
1000 | *
o
o 100
(]
10
1 . S
1 10 100 1000 10000 100000
Class
Table 6
The power law parameters of the three large ontologies.
a C R? Std. Error Significance
Full-Galen NOC 067 414.29 090 0.22 0.000
DIT - - - - -
CID 091 561980 096 0.18 0.000
COD 046 111.65 0.85 0.20 0.000
Go_daily- NOC 0.80 1480.30 0.95 0.18 0.000
termdb
DIT - - - - -
CID 079 155154 095 0.19 0.000
COD 035 34.78 0.74 0.21 0.000
NCI Thesaurus NOC 0.88 479822 0.95 0.21 0.000
DIT - - - - -
CID 1.02 2825427 0.94 0.26 0.000
COD 049 194.81 0.88 0.18 0.000

ontology engineer can check how regular (or irregular) an ontol-
ogy'’s structure is.

Using the four proposed class-level metrics, ontology engineers
could have better insights of the quality of the internal design of
the ontology. By means of NOC and DIT, they could check whether
the internal design is a good decomposition of the problem space.
The power law distribution of CID and COD means that the ontol-
ogy graph is very inhomogeneous. By using CID and COD, ontology
engineers could understand the inter-connectivity among the clas-
ses, and identify the more “important” classes that require more
attentions.

The proposed metrics could also be useful for project managers
who may not be able to review the detailed ontology design mate-
rials. The metrics could serve as “indicators” of the ontology qual-
ity, helping managers understand the development status, gain an
overall picture of ontology complexity, and identify potential prob-
lematic areas. The managers could then have a better control of the
ontology development process, which may involve changes in
ontology design and project schedule.

Very often there are many possible designs for an ontology.
The proposed metrics can be applied to evaluate different design
alternatives. For example, Rector (Rector, 2002; Rector, 2003) ob-
serves that many large ontologies use existing classifications that

are usually tangled and heterogenous, often mixing subsumption
and partonomy. Rector then suggests a normalized ontology de-
sign, which decomposes an ontology into independent disjoint
homogeneous taxonomies (each taxonomy has a tree structure).
By using our metrics, we find that the tangled version has a smal-
ler set of vocabulary, shorter inheritance tree, and less diverse
structure than the normalized version. From these points of view,
the normalization leads to a more complex design. However, the
tangled version has higher edge density and is more deviated
from the pure tree structure; therefore the normalization leads
to a “conceptually clearer” design if ENR and TIP are considered.
By using the proposed metrics, we can achieve a better under-
standing of an ontology design and an improved decision-making
process.

8. Conclusions

Semantic Web ontologies are believed to be an ideal candidate
for representing domain knowledge because of their wide adoption
and formal semantics (Smith et al., 2007; Gardner, 2005; Searls,
2005; Ruttenberg et al., 2009). With the proliferation of Semantic
Web technologies, more and more large ontologies are being
developed in a wide variety of domains. As design complexity
has impact on human understanding, measuring the complexity
of ontologies has become a very important task for ontology devel-
opment, maintenance, and reuse. In this paper, we have proposed a
suite of metrics for ontology measurement, including ontology-le-
vel metrics (SOV, ENR, TIP, EOG) and class-level metrics (NOC, DIT,
CID, COD). We evaluated the proposed metrics analytically using
Weyuker’s criteria and empirically using data collected from large,
public ontologies. The analytical evaluation shows that the pro-
posed metrics satisfy most of Weyuker’s properties, and the empir-
ical evaluation shows that the proposed metrics can differentiate
ontologies with distinct degrees of complexity. The evaluation re-
sults confirm that the proposed metrics can be applied in practices
to evaluate the design complexity of ontologies. In this paper, we
also discuss the possible applications of the proposed metrics to
ontology quality control.

In the future, we plan to apply the proposed metrics to the
development of large-scale ontologies in practices, and to collect

H. Zhang et al./ The Journal of Systems and Software 83 (2010) 803-814 813

data to investigate how the metrics can be used to improve the
process of ontology engineering. We will then further refine/en-
hance the proposed metrics. We also plan to further investigate
the relationship between the complexity of an ontology and its
quality. We assume that more complex ontologies are harder to
maintain and are more defect-prone, therefore more quality assur-
ance (QA) and maintenance efforts are needed. An empirical study
on the correlations between the proposed metrics and ontology
reliability and maintainability is an important future research
direction. Moreover, theoretical and empirical research are also re-
quired to identify exactly how each metric is associated with in-
creased cognitive complexity.

Acknowledgement

This research is supported by the Chinese NSF grant 60703060,
and the state 863 project 2007AA01Z480 and 2007AA01Z122. We
also acknowledge the support from the MOE Key Laboratory of
High Confidence Software Technologies at Peking University. We
thank Jeff Pan at the University of Aberdeen and Jane Hunter at
the University of Queensland for their valuable comments. We
would also like to thank the anonymous reviewers for their
detailed and insightful comments.

References

Auer, S., Bizer, C., Kobilarov, G., Lehmann,]., Cyganiak, R., Ives, Z., 2008. DBpedia: a
nucleus for a web of open data. In: Proceedings of 6th International Semantic
Web Conference, 2nd Asian Semantic Web Conference (ISWC+ASWC 2007),
2008, pp. 722-735. URL <http://dx.doi.org/10.1007/978-3-540-76298-0_52>.

Barabasi, A.-L., Albert, R., 1999. Emergence of scaling in random networks. Science
286 (5439), 509-512. URL: <http://view.ncbi.nlm.nih.gov/pubmed/10521342>.

Barabasi, A.-L., Bonabeau, E., 2003. Scale-free networks. Scientific American 288,
50-59.

Basili, V.R., Briand, L.C., Melo, W.L., 1996. A validation of object-oriented design
metrics as quality indicators. IEEE Transactions on Software Engineering 22
(10), 751-761. <http://dx.doi.org/10.1109/32.544352>.

Berners-Lee, T., Hendler,]., Lassila, O., 2001. The semantic web. Scientific American
284 (5), 35-43.

Brickley, D., Guha, R.V. (Eds.), 2004. Resource Description Framework (RDF) Schema
Specification 1.0, (Feb. 2004). <http://www.w3.org/TR/rdf-schema/>.

Burton-Jones, A., Storey, V.C., Sugumaran, V., Ahluwalia, P., 2005. A semiotic metrics
suite for assessing the quality of ontologies. Data Knowledge Engineering 55 (1),
84-102.

Cherniavsky, J.C., Smith, C.H., 1991. On Weyuker's axioms for software complexity
measures. [EEE Transactions on Software Engineering 17 (6), 636-638. http://
dx.doi.org/10.1109/32.87287.

Chidamber, S., Kemerer, C., 1994. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20 (6), 476-493. <http://
doi.ieeecomputersociety.org/10.1109/32.295895>.

DeMarco, T., 1986. Controlling Software Projects: Management, Measurement, and
Estimates. Prentice-Hall, PTR, Upper Saddle River, NJ, USA.

Fenton, N., Melton, A., 1990. Deriving structurally based software measures. Journal
of Systems and Software 12 (3), 177-187. <http://dx.doi.org/10.1016/0164-
1212(90)90038-N>.

Fenton, N., Pfleeger, S.L., 1998. Software Metrics: A Rigorous and Practical Approach.
PWS Publishing Co., Boston, MA, USA.

Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J., 2006. Modelling ontology
evaluation and validation. In: Proceedings of the 3rd European Semantic Web
Conference (ESWC'06), Budva, Montenegro, pp. 140-154.

Gardner, S.P., 2005. Ontologies and semantic data integration. Drug Discovery
Today 10 (14), 1001-1007. doi:10.1016/S1359-6446(05)03504-X.

Gruber, T., 1993. A translation approach to portable ontology specifications.
Knowledge Acquisition 5 (2), 199-220.

Gursaran, Roy, G., 2001. On the applicability of Weyuker Property 9 to object-
oriented structural inheritance complexity metrics. IEEE Transactions on
Software Engineering 27 (4), 381-384. <http://dx.doi.org/10.1109/32.917526>.

Harrison, W., 1992. An entropy-based measure of software complexity. IEEE
Transactions on Software Engineering 18 (11), 1025-1029. <http://dx.doi.org/
10.1109/32.177371>.

Horrocks, 1., Patel-Schneider, P.F., van Harmelen, F., 2003. From ¥ .#.# 2 and RDF to
OWL: the making of a web ontology language. Journal of Web Semantics 1 (1),
7-26.

Kang, D., Xu, B., Ly, J., Chu, W.C., 2004. A complexity measure for ontology based on
UML. In: Proceedings of the 10th IEEE International Workshop on Future Trends
of Distributed Computing Systems (FTDCS’04), IEEE CS, Washington, DC, USA,
pp. 222-228.

Koru, A.G., Tian, J., 2003. An empirical comparison and characterization of high
defect and high complexity modules. Journal of Systems and Software 67 (3),
153-163. <http://dx.doi.org/10.1016/S0164-1212(02)00126-7>.

Law, K.S., Wong, C.-S., Mobley, W.H., 1998. Toward a taxonomy of multidimensional
constructs. The Academy of Management Review 23 (4), 741-755. URL: <http://
www.jstor.org/stable/259060>.

Li, HF., Cheung, WK, 1987. An empirical study of software metrics. IEEE
Transactions on Software Engineering 13 (6), 697-708. <http://dx.doi.org/
10.1109/TSE.1987.233475>.

Lindsay, P.H., Norman, D.A., 1977. Human Information Processing: An Introduction
to Psychology, second ed. Academic Press, New York. URL: <http://
millenium.itesm.mx/record= i143498&searchscope=0>.

McCabe, TJ., 1976. A complexity measure. IEEE Transactions on Software
Engineering 2 (4), 308-320.

Miller, G.A., 1956. The magical number seven plus or minus two: some limits on
our capacity for processing information. The Psychological Review 63, 81-97.
URL: <http://users.ecs.soton.ac.>, <http://uk/harnad/Papers/Py104/Mille r/
miller.html>.

Newman, M., 2005. Power laws pareto distributions and Zipf's law. Contemporary
Physics 46 (5), 323-351.

Opdahl, AL, Henderson-Sellers, B., 2001. Grounding the OML metamodel in
ontology. Journal of Systems and Software 57 (2), 119-143. http://dx.doi.org/
10.1016/S0164-1212(00)00123-0.

Rector, A.L.,, 2002. Normalisation of ontology implementations: towards modularity,
re-use, and maintainability. In: Proceedings of the Workshop on Ontologies for
Multiagent Systems (OMAS), Siguenza, Spain.

Rector, A.L., 2003. Modularisation of domain ontologies implemented in description
logics and related formalisms including OWL. In: K-CAP '03: Proceedings of the
2nd international conference on Knowledge capture, ACM Press, New York,
USA, pp. 121-128. <http://doi.acm.org/10.1145/945645.945664>.

Rector, A.L,, Nowlan, W., Glowinski, A., 1993. Goals for concept representation in the
GALEN project. In: Proceedings of the 17th Annual Symposium on Computer
Applications in Medical Care (SCAMC'93), pp. 414-418.

Rector, A.L., Noy, N., Drummond, N., Musen, M., 2005. Ontology design patterns and
problems: practical ontology engineering using Protégé-OWL. In: Proceedings
of the 4th International Semantic Web Conference (ISWC'05). Springer-Verlag,
Galway, Ireland (tutorial notes).

Ruttenberg, A., Rees, J., Samwald, M., Marshall, M.S., 2009. Life sciences on the
semantic web: the neurocommons and beyond. Briefings in Bioinformatics 10
(2), 193-204. doi:10.1093/bib/bbp004.

Searls, D.B., 2005. Data integration: challenges for drug discovery. Nature Reviews
Drug Discovery 4 (1), 45-58. doi:10.1038/nrd1608.

Sheridan, T., 1980. Mental workload - What is it? Why bother with it? Human
Factors Society Bulletin 23 (2), 1-2.

Simon, H.A., 1974. How big is a chunk? Science 183 (4124), 482-488.

Smith, B., Ashburner, M., Rosse, C., Bard,]., Bug, W., Ceusters, W., Goldberg, L].,
Eilbeck, K., Ireland, A., Mungall, C.J., Leontis, N., Rocca-Serra, P., Ruttenberg, A.,
Sansone, S.-A., Scheuermann, R.H., Shah, N., Whetzel, P.L., Lewis, S., 2007. The
OBO foundry: coordinated evolution of ontologies to support biomedical data
integration. Nature Biotechnology 25 (11), 1251-1255. doi:10.1038/nbt1346.

Subramanyam, R., Krishnan, M.S., 2003. Empirical analysis of CK metrics for object-
oriented design complexity: implications for software defects. IEEE
Transactions on Software Engineering 29 (4), 297-310. <http://dx.doi.org/
10.1109/TSE.2003.1191795>.

Vrandecic, D., Sure, Y., 2007. How to design better ontology metrics. In: ESWC '07:
Proceedings of the 4th European conference on The Semantic Web. Springer-
Verlag, Innsbruck, Austria, pp. 311-325. <http://dx.doi.org/10.1007/978-3-540-
72667-8_23>.

Wang, T.D., Parsia, B., Hendler, J.A., 2006. A survey of the web ontology landscape.
In: International Semantic Web Conference, Lecture Notes in Computer Science,
vol. 4273. Springer, pp. 682-694. doi:10.1007/11926078_49. URL: <http://
dx.doi.org/10.1007/11926078_49>.

Weyuker, E.J., 1988. Evaluating software complexity measures. IEEE Transactions on
Software Engineering 14 (9), 1357-1365. <http://dx.doi.org/10.1109/32.6178>.

Wilde, N., Matthews, P., Huitt, R., 1993. Maintaining object-oriented software. IEEE
Software 10 (1), 75-80. <http://dx.doi.org/10.1109/52.207232>.

Yao, H., Orme, A.M., Etzkorn, L., 2005. Cohesion metrics for ontology design and
application. Journal of Computer Science 1 (1), 107-113.

Zhang, L., Xie, D., 2002. Comments on the applicability of Weyuker Property 9 to
object-oriented structural inheritance complexity metrics. IEEE Transactions on
Software Engineering 28 (5), 526-527. <http://dx.doi.org/10.1109/TSE.2002.
1000454>.

Zhang, H., Zhang, X., Gu, M., 2007. Predicting defective software components from
code complexity measures. In: PRDC '07: Proceedings of the 13th Pacific Rim
International Symposium on Dependable Computing, IEEE Computer Society,
Washington, DC, USA, pp. 93-96. <http://dx.doi.org/10.1109/PRDC.2007.56>.

Zuse, H., 1991. Software Complexity: Measures and Methods. Walter de Gruyter &
Co., Hawthorne, NJ, USA.

Hongyu Zhang received the PhD degree in computer science from the School of
Computing, National University of Singapore in 2003, the MS degree in communi-
cation and networks from Nanyang Technological University, Singapore in 1998. He
is currently an Associate Professor at the School of Software, Tsinghua University,
Beijing, China. Before joining Tsinghua, he was a lecturer at the School of Computer
Science and Information Technology, RMIT University, Australia. His research is

http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://view.ncbi.nlm.nih.gov/pubmed/10521342
http://dx.doi.org/10.1109/32.544352
http://www.w3.org/TR/rdf-schema/
http://dx.doi.org/10.1109/32.87287
http://dx.doi.org/10.1109/32.87287
http://doi.ieeecomputersociety.org/10.1109/32.295895
http://doi.ieeecomputersociety.org/10.1109/32.295895
http://dx.doi.org/10.1016/0164-1212(90)90038-N
http://dx.doi.org/10.1016/0164-1212(90)90038-N
http://dx.doi.org/10.1016/S1359-6446(05)03504-X
http://dx.doi.org/10.1109/32.917526
http://dx.doi.org/10.1109/32.177371
http://dx.doi.org/10.1109/32.177371
http://dx.doi.org/10.1016/S0164-1212(02)00126-7
http://www.jstor.org/stable/259060
http://www.jstor.org/stable/259060
http://dx.doi.org/10.1109/TSE.1987.233475
http://dx.doi.org/10.1109/TSE.1987.233475
http://dx.doi.org/10.1016/S0164-1212(00)00123-0
http://dx.doi.org/10.1016/S0164-1212(00)00123-0
http://doi.acm.org/10.1145/945645.945664
http://dx.doi.org/10.1093/bib/bbp004
http://dx.doi.org/10.1038/nrd1608
http://dx.doi.org/10.1038/nbt1346
http://dx.doi.org/10.1109/TSE.2003.1191795
http://dx.doi.org/10.1109/TSE.2003.1191795
http://dx.doi.org/10.1007/978-3-540-72667-8_23
http://dx.doi.org/10.1007/978-3-540-72667-8_23
http://dx.doi.org/10.1007/11926078_49
http://dx.doi.org/10.1007/11926078_49
http://dx.doi.org/10.1109/32.6178
http://dx.doi.org/10.1109/52.207232
http://dx.doi.org/10.1109/TSE.2002.1000454
http://dx.doi.org/10.1109/TSE.2002.1000454
http://dx.doi.org/10.1109/PRDC.2007.56

814 H. Zhang et al./ The Journal of Systems and Software 83 (2010) 803-814

mainly in the area of software engineering, in particular, software metrics, software
quality, and software reuse. He has published more than 40 research papers in
international journals and conferences proceedings.

Yuan-Fang Li is a research fellow at the School of ITEE, the University of Queens-
land, Australia. He received both his Bachelor of Computing (with honors) and PhD’s
degrees from National University of Singapore. His main research interests include
the Semantic Web, ontology languages, semantic querying and inference, large-
scale information processing, information visualization and formal methods.

Hee Beng Kuan Tan received his B.Sc.(First Class Hons) in Mathematics in 1974
from the Nanyang University (Singapore). He received his M.Sc. and Ph.D. degrees in
Computer Science from the National University of Singapore in 1989 and 1996
respectively. He has thirteen years of experience in IT industry before moving to
academic. He is currently an Associate Professor with the Division of Information
Engineering in the School of Electrical and Electronic Engineering, Nanyang Tech-
nological University. His current research interest is in software testing and anal-
ysis, and software security.

	Measuring design complexity of semantic web ontologies
	Introduction
	Background and related work
	The Graph-centric representation of ontologies
	The proposed metrics for measuring complexity of ontology
	Ontology-level metrics
	Size of vocabulary (SOV)
	Edge node ratio (ENR)
	Tree impurity (TIP)
	Entropy of graph (EOG)

	Class-level metrics
	Number of children (NOC)
	Depth of inheritance (DIT)
	Class in-degree (CID)
	Class out-degree (COD)

	Analytical evaluation of the complexity metrics
	Evaluation of the proposed metrics
	Evaluation of ontology-level metrics
	Evaluation of class-level metrics

	Summary of the analytical evaluation

	Empirical evaluation of the complexity metrics
	Evaluation of ontology-level metrics
	Evaluation of class-level metrics

	Possible applications of the metrics to ontology engineering
	Conclusions
	Acknowledgement
	References

