
Predicting Node Failure in Cloud Service Systems
Qingwei Lin

Microsoft Research
Beijing, China

Ken Hsieh
Microsoft

Redmond, USA

Yingnong Dang
Microsoft

RedmondUSA

Hongyu Zhang
The University of Newcastle

NSW, Australia

Kaixin Sui
Microsoft Research

Beijing, China

Yong Xu
Microsoft Research

Beijing, China

Jian-Guang Lou
Microsoft Research

Beijing, China

Chenggang Li
Microsoft Research

Beijing, China

Youjiang Wu
Microsoft

Redmond, USA

Randolph Yao
Microsoft

Redmond, USA

Murali Chintalapati
Microsoft

Redmond, USA

Dongmei Zhang
Microsoft Research

Beijing, China

ABSTRACT
In recent years, many traditional software systems have migrated
to cloud computing platforms and are provided as online services.
The service quality matters because system failures could seriously
affect business and user experience. A cloud service system typically
contains a large number of computing nodes. In reality, nodes may
fail and affect service availability. In this paper, we propose a failure
prediction technique, which can predict the failure-proneness of
a node in a cloud service system based on historical data, before
node failure actually happens. The ability to predict faulty nodes
enables the allocation and migration of virtual machines to the
healthy nodes, therefore improving service availability. Predicting
node failure in cloud service systems is challenging, because a node
failure could be caused by a variety of reasons and reflected by
many temporal and spatial signals. Furthermore, the failure data is
highly imbalanced. To tackle these challenges, we propose MING,
a novel technique that combines: 1) a LSTM model to incorporate
the temporal data, 2) a Random Forest model to incorporate spatial
data; 3) a ranking model that embeds the intermediate results of
the two models as feature inputs and ranks the nodes by their
failure-proneness, 4) a cost-sensitive function to identify the optimal
threshold for selecting the faulty nodes. We evaluate our approach
using real-world data collected from a cloud service system. The
results confirm the effectiveness of the proposed approach. We have
also successfully applied the proposed approach in real industrial
practice.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236060

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging; Maintaining software;

KEYWORDS
Failure prediction, service availability, node failure, cloud service
systems, maintenance.

ACM Reference Format:
Qingwei Lin, Ken Hsieh, Yingnong Dang, Hongyu Zhang, Kaixin Sui, Yong
Xu, Jian-Guang Lou, Chenggang Li, Youjiang Wu, Randolph Yao, Murali
Chintalapati, and Dongmei Zhang. 2018. Predicting Node Failure in Cloud
Service Systems . In Proceedings of the 26th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’18), November 4–9, 2018, Lake Buena Vista, FL, USA.ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3236024.3236060

1 INTRODUCTION
In recent years, deploying applications and services on large-scale
cloud platforms, such as Microsoft Azure, Google Cloud, and Ama-
zon AWS, has been widely accepted by software industry. These
cloud service systems need to provide a variety of services to mil-
lions of users from around the world every day, therefore high
service availability is essential as a small problem could cause seri-
ous consequences. Many service providers have made tremendous
efforts to maintain high service availability. For example, Amazon
EBS [1] claims to have "five nines", which represents the service
availability of 99.999%, allowing at most 26 seconds down time per
month per VM. Microsoft Azure [27] also claims similar service
availability.

Although a lot of effort has been devoted to service quality as-
surance [2, 16, 23, 28, 37], in reality, cloud service systems still
encounter many problems and fail to satisfy user requests. These
problems are often caused by failures of computing nodes in cloud
service systems. A cloud service system typically contains a large
number of computing nodes, which supply the processing, network,
and storage resources that virtual machine instances need. Some
empirical studies have dedicated to the analysis of node failures. For

480

https://doi.org/10.1145/3236024.3236060
https://doi.org/10.1145/3236024.3236060

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Lin et al.

example, Vishwanath and Nagappan [38] classified server failures
in a data center and found that 8% of all servers had at least one
hardware incident in a given year. Ford et al. studied [11] the avail-
ability of Google distributed storage systems, and characterized
the sources of faults contributing to unavailability. Dinu and Ng
[9] analyzed Hadoop behavior when nodes fail and found that a
single failure can result in unpredictable system performance. In
Microsoft, each day, out of all the server nodes in its cloud system,
less than 0.1% of the nodes encounter failures. While the failure
rate of 0.1% may seem insignificant, it has drastic impact on ser-
vices that target at 99.999% availability or beyond. According to our
experience in Microsoft, node failure was one of the top causes of
service down time.

To improve service availability, we propose to predict the failure-
proneness of a node in cloud service systems before the failure
actually happens. We apply machine learning techniques to learn
the characteristics of historical failure data, build a failure predic-
tion model, and then use the model to predict the likelihood of a
node failing in the coming days. The ability to predict faulty nodes
enables cloud service systems to allocate VMs (Virtual Machines) to
the healthier nodes, therefore reducing the occurrences and dura-
tion of VM down time caused by the node failures. Furthermore, if
a node is predicted as faulty, the cloud service system can perform
proactive live migration - to migrate the virtual machines from the
faulty node to a healthy node without disconnecting the service.

However, building an accurate prediction model for node failure
in cloud service systems is challenging. We have identified three
main reasons:

Complicated failure causes: Due to the complexity of the
large-scale cloud system, node failures could be caused by many
different software or hardware issues. Examples of these issues
include software bugs, OS crash, disk failure, service exception, etc.
There is no simple rule/metric that can predict all node failures in
a straightforward manner.

Complex failure-indicating signals: Failures of a node could
be indicated by many temporal signals produced by the node lo-
cally. They could also be reflected by spatial properties that are
shared by nodes that have explicit/implicit dependency among
them in different global views of the cloud. We need to analyze
both temporal signals and spatial properties to better capture the
early failure-indicating signals.

Highly imbalanced data: Node fault data is highly imbalanced
as most of the time the cloud service system has high service avail-
ability. For example, in our system, the node ratio between failure
and healthy classes is less than 1:1000 (i.e., less than 0.1% nodes con-
tain failures). The highly imbalanced data poses great challenges
to prediction.

To tackle the challenges, we propose MING, a novel technique
for predicting node failure in cloud service systems. MING includes:
1) a LSTM-based deep learning model to incorporate the temporal
data, 2) a Random Forest model to incorporate the spatial data, 3) a
learning-to-rank model that embeds the intermediate results of the
two models as feature inputs and ranks the nodes by their failure-
proneness, and 4) a cost-sensitive function to identify the optimal
threshold in the ranked results for selecting the faulty nodes.

We evaluate our approach using real-world data collected from
a cloud-based service system in production. The results show that

MING outperforms the baseline approaches that are implemented
using conventional classification techniques. Furthermore, we have
successfully applied MING to the maintenance of a cloud service
system X in Microsoft since September 2017. In a typical day, the
top 1% failure-prone nodes in Service X identified by MING capture
above 60% of the failures in the next day. In anA/B testing conducted
by the Service X team, MING is able to intelligently allocate new
VMs to more healthier nodes and has achieved above 30% reduction
in these VMs’ failure rate. MING won the 2017 "Tech Transfer of
The Year" award in a research division of Microsoft.

The main contributions of our work are as follows:
• We propose MING, which can improve service availability by
predicting node failure in cloud service systems. Through fail-
ure prediction, intelligent VM allocation and migration can be
achieved.

• To build an accurate failure prediction model, we design a two-
phase training model, which can well handle the temporal and
spatial features and is less sensitive to highly imbalanced data.

• We evaluate our approach using data collected from a cloud-
based service system. MING achieves the average Recall of 63.5%
and Precision of 92.4% on three datasets, and outperforms the
baseline approaches built using conventional classifiers.

• We have applied MING to the maintenance of a large-scale cloud
service system. The results confirm the effectiveness of MING
in industrial practice. To the best of our knowledge, this is the
first time node failure prediction is applied in a production cloud
service environment.
The rest of this paper is organized as follows: In Section 2, we

introduce the background and motivation of our work. Section 3
covers the proposed framework and algorithms. The evaluation is
described in Section 4. We also discuss the results and presents the
threats to validity. In Section 5, we share our success stories and
experience obtained from industrial practice. The related work and
conclusion are presented in Section 6 and Section 7, respectively.

2 IMPROVING SERVICE AVAILABILITY OF
CLOUD SYSTEMS

2.1 Cloud Service Systems
Cloud computing has emerged as a new paradigm for delivery of
computing as services via the Internet. It offers many service models
such as Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). Deploying applications
and services on cloud computing platforms such as Microsoft Azure
and Amazon Web Services has been widely accepted by software
organizations and developers.

A typical cloud service system contains a large number of physi-
cal servers, or "nodes". For example, Amazon Web Services is likely
to have 1.3 million servers1. The nodes are arranged into racks
and a group of racks form a cluster. Virtualization is one of key
technologies used in modern cloud computing, which offers better
scalability, maintainability, and reliability. A physical node can host
multiple virtual machines (VMs). VMs can be backed up, scaled or

1http://www.zdnet.com/article/aws-cloud-computing-ops-data-centers-1-3-million-
servers-creating-efficiency-flywheel/

481

Predicting Node Failure in Cloud Service Systems ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

duplicated, making it easy to suit end users’ needs. When a VM al-
location request is sent out, the cloud service system will determine
the appropriate node to host the VM. If a node fails, all VMs hosted
on it will correspondinly fail. Cloud service systems also support
live migration, which refers to the process of moving a running VM
between different nodes without disconnecting the client or appli-
cation [7]. Live migration is a powerful mechanism for managing
cloud services, as it enables rapid movement of workloads within
clusters with low impact on running services.

2.2 Service Availability
For large-scale software systems, especially cloud service systems
such as Microsoft Azure, Amazon AWS, and Google Cloud, high ser-
vice availability is crucial. Service availability is a state of a service
being accessible to the end user. Usually expressed as a percentage
of uptime, it represents the level of operational performance of a
system or component for a given period of time. As cloud systems
provide services to hundreds of millions of users around the world,
service problems can often lead to great revenue loss and user dis-
satisfaction. Hence, in today’s practice, the service providers have
made every effort to maintain a high service availability, such as
"five nines" (99.999%), meaning less than 26 seconds down time per
month per VM allowed2.

Although tremendous effort has been made to maintain high ser-
vice availability, in reality, there are still many unexpected system
problems caused by software or platform failures (such as software
crashes, network outage, misconfigurations, memory leak, hard-
ware breakdown, etc.). These problems become more severe with
the ever-increasing scale of the service systems. For example, in
February 2017, AWS experienced a massive outage of its S3 Storage
services, causing a majority of websites which relied on AWS S3
unresponsive. 54 of the Internet’s top 100 retailers observed website
performance slow by 20% or more3.

It has been found that node failure is one of the most common
problems that cause system unavailability [38]. Our experience in
Microsoft also shows that node failure is the dominant cause of
service down time. If a node fails, all the VMs running on it will
correspondingly fail, which could affect service availability.

2.3 Improving Service Availability by Node
Failure Prediction

Different nodesmay fail at different times.We propose to predict the
failure-proneness of a node based on the analysis of historical fault
data, before the node fails. The ability to predict node failure can
help improve service availability from the following two aspects:

• VM allocation, which is the process of allocating a VM (vir-
tual machine) to a node. To enable better VM allocation, we
can always allocate VMs to a healthier node rather than to a
faulty node.

• Live migration, which is the process of moving a running VM
between different nodes without disconnecting the client
or application. To enable more effective live migration of
nodes, we can proactively migrate VMs from the predicted

2https://msdn.microsoft.com/en-us/library/ee799074(v=cs.20).aspx
3https://www.businessinsider.com.au/aws-outage-hurt-internet-retailers-except-
amazon-2017-3?r=US&IR=T

faulty nodes to the healthy ones, before node failure actually
happens.

To achieve so, we can build a predictionmodel based on historical
failure data using machine learning techniques, and then use the
model to predict the likelihood of a node failing in the near future.
The prediction model should have the following abilities:

• The predictionmodel should be able to rank all nodes by their
failure-proneness so that the service systems can allocate a
VM to the healthiest node available.

• The prediction model should be able to identify a set of faulty
nodes from which the hosted VMs should be migrated out,
under the constrains of cost and capacity.

There are several technical challenges in designing a failure
prediction model for a large-scale cloud:

2.3.1 Complicated Failure Causes. Due to the complexity of a cloud
service system, node failures could be caused by many different
software or hardware issues. Examples of these issues include OS
crash, application bugs, disk failure, misconfigurations, memory
leak, software incompatibility, overheating, service exception, etc.
According to the estimation of domain experts in Microsoft, the
number of root causes of node failure is over one hundred. Simple
rule-based or threshold-based models are not able to locate the
problem and achieve good prediction results. To tackle this chal-
lenge, in this paper, we propose a machine learning based approach
to node failure prediction in cloud systems.

2.3.2 Complex Failure-indicating Signals. Failures of a single node
could be indicated by temporal signals coming from a variety of
software or hardware sources of the node. Examples of the temporal
signals are performance counters, logs, sensor data, and OS events.
They are continuously monitored and changing over time.

In a large-scale cloud system, failures of a node could also be
reflected by spatial properties shared by the nodes that are explic-
itly/implicitly dependent on each other. We have identified the
following dependencies between two nodes: 1) Resource-based de-
pendency: two nodes may compete for a computing resource (e.g.,
a router), 2) Location-based dependency: two nodes may co-exist
in the same computing segment/domain (such as the same rack), 3)
Load balancing based dependency: two nodes may be in the same
group for load balancing. The mutually dependent nodes tend to
be infected by the same failure-inducing cause. For example, if a
certain portion of nodes fail, other nodes in the same segment could
fail in the near future too. Therefore, the spatial properties that are
shared among the mutually dependent nodes also have predictive
power. Examples of the spatial properties include update domain,
shared router, rack location, resource family, load balance group,
batch operation group, etc.

We need to incorporate both temporal and spatial data in order
to better capture the early failure-indicating signals and build an
accurate prediction model. To tackle this challenge, in this paper,
we construct two specific base learners to incorporate temporal
and spatial data, respectively. We then ensemble the results to train
a ranking model.

2.3.3 Highly Imbalanced Data. In a large-scale cloud service sys-
tem of Microsoft, every day, only one in one thousand nodes could

482

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Lin et al.

become faulty. The extreme 1-in-1000 imbalanced ratio poses diffi-
culties in training a classification model. Fed with such imbalanced
data, a naive classification model could attempt to judge all nodes
to be healthy, because in this way, it has the lowest probability of
making a wrong guess. Some approaches apply data re-balancing
techniques, such as over-sampling and under-sampling techniques,
to address this challenge. Such approaches help raise the recall, but
at the same time could introduce a large number of false positives,
which dramatically decreases the precision. To tackle this challenge,
in this paper, we propose a ranking model to rank the nodes by
their failure-proneness. Unlike a conventional classification model
whose objective is to find a best separation to distinguish all the
positive and negative instances, a ranking model focuses on opti-
mizing the top k returned results therefore it is more appropriate
in our scenario.

3 THE PROPOSED APPROACH
3.1 Overview
In this paper, we propose MING, a novel technique for improving
service availability by predicting node failure in a cloud service
system. Figure 1 shows an overall workflow of the proposed ap-
proach. MING includes two phases of training. In Phase 1, two
base classification models are trained: a LSTM model for tempo-
ral data and a Random Forest model for spatial data. In Phase 2,
the intermediate results of the two base learners are embedded as
features and fed as input to a ranking model. The ranking model
ranks the nodes by their failure-proneness. MING identifies the
top r ones that minimize the misclassification cost as the predicted
faulty nodes. We describe the major steps in this section.

Figure 1: The overview of MING

3.2 Phase 1 Training
In this phase, we first train base learners on the training data. As
stated in Section 2, to construct an effective node failure prediction
model, we collect heterogeneous data for each node from diverse
sources and identify features from the data with the help of product
teams. Table 1 shows some examples of features. These features
can be categorized into the following two types:

• Temporal features, which directly represent a node’s local
status in time (such as performance counters, IO throughput,
resource usage, sensor values, response delays, etc.) or can be
aggregated as temporal data from the original sources (such
as log event counts, error/exception event counts, system
event counts, etc.). We collect 137 of these features in total.

• Spatial features, which indicate explicit/implicit dependency
in global relationships among nodes. Examples of these fea-
tures include deployment segment, rack location, load bal-
ance group, policy group, update domain, etc. We collect 82
these features.

Table 1: Some examples of features

Feature Type Description
UpdateDomain Spatial The domain where nodes

share same update setting.
MemoryUsage Temporal Memory consumption.
DiskSectorError Temporal Sector errors in a disk drive.
ServiceError Temporal Error counts from a deployed

service.
RackLocation Spatial The location of the rack the

node belongs to.
LoadBalanceGroup Spatial The group where nodes’ load

are balanced.
IOResponse Temporal I/O Response time.

OSBuildGroup Spatial The group where nodes have
the same OS build.

It is known that different machine learning algorithms could
work well only on some specific types of features, while performs
weakly on others. To support specific type of features, feature con-
version needs to be performed (e.g., converting categorical features
into numeric values), which may incur much information loss. To
cater for different types of features, in this phase we build a separate
learner for each type of data: temporal and spatial.

Figure 2: Training LSTM Model

For temporal features, we apply LSTM (Long Short-Term Mem-
ory), which is a widely adopted deep neural network (DNN) model
[15, 19]. It can balance between retaining the previous state and
memorizing new information. LSTM can better capture the pat-
terns behind the time-series data and has proven to be successful
in solving tasks such as machine translation and speech recogni-
tion. Figure 2 illustrates the training of the LSTM model in our
approach. We use bi-directional LSTM [32] for the time series data
x1,x2, ...,xn , where xi is the input vector of all temporal features
at time i . The LSTM layer produces the representation sequence
h1,h2, ...,hn , which is fed to a dense layer (fully connected layer).
The output of the dense layer is a 128 x 1 vectorVt . The vector is fed

483

Predicting Node Failure in Cloud Service Systems ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

to a so f tmax function [15], which is the final layer of a DNN-based
classifier.

Figure 3: Training Random Forest Model

For spatial features, we apply the Random Forest learner, which
is one of the most widely used classification methods. It builds a
multitude of decision trees at training time and outputs the class of
the voting result from the individual trees. Random Forest splits the
trees based on the information gain, therefore it can better reflect
the impact of discrete values. Figure 3 illustrates the training of the
Random Forest model in our approach. Given the spatial data, an
ensemble of trees (total 128) are trained. The results h1,h2, ...,hn
are concatenated into a vector Vs and fed to a majority voting
module, producing the final classification result.

3.3 Phase 2 Training
In Phase 2 training, we construct a prediction model to predict
the failure-proneness of nodes in near future. Different nodes have
different likelihood of failing. In this step, we formulate the pre-
diction problem as a ranking problem. That is, instead of simply
telling whether a node is faulty or not, we rank the nodes by their
probability of being faulty. By giving relative order as opposed to
a binary label, the results of a ranking algorithm can distinguish
between different degrees of failure-proneness. The ranking results
better serve the goal of VM allocation (allocating a VM to a healthier
node) and on-demand live migration (migrating a VM from a faulty
node to a healthier nodes). Furthermore, as the ranking approach
is effective in optimizing the top k results, it could work better in
the case of highly imbalanced data.

In this phase, we take the intermediate output vectors produced
by the base learners as the input vector to the ranking model. More
specifically, from the LSTM model, we use the output vector Vt
of the Dense layer. From the Random Forest model, we use the
output vector Vs produced by the trees. We then concatenate the
two output vectors and form a 256 x 1 input vectorV for the ranking
model.

To train a ranking model, we obtain the historical failure data
about the nodes, and rank the nodes according to the frequency
and duration of failures. We adopt the concept of Learning to Rank
[24], which automatically learns an optimized ranking model to
minimize the cost of disorder, especially the cost for the top results
(similar to the optimization of the top results in a search engine).
Specifically, LambdaMART [4] is used here, which is the boosted
tree version of learning-to-rank algorithm. It has proven to be a

very successful algorithm and won the 2010 Yahoo! Learning To
Rank Challenge (Track 1) [4].

3.4 Cost-sensitive Thresholding
To improve service availability, we would like to intelligently allo-
cate VMs to the healthier nodes so that these VMs are less likely
to suffer from node failures in near future. We also propose to
proactively migrate live VMs residing on high-risk nodes to healthy
nodes. To achieve so, we apply cost-sensitive thresholding to iden-
tify the faulty nodes for live migration.

As most of the nodes are healthy and only a small percentage of
nodes are faulty, we select the top r nodes returned by the ranking
model as the faulty ones. The optimal top r nodes are selected with
historical data to minimize the total misclassification cost:

r = argmin
r

(CostRatio ∗ FPr + FNr),

where FPr and FNr are the number of false positives and false
negatives in the top r predicted results, respectively. We denote by
Cost1 the cost of failing to identify a faulty node (false negatives).
We denote by Cost2 the cost of wrongly identifying a healthy node
as faulty (false positives), which involves the cost of unnecessary
live migration from the "faulty" node to a healthy node. We define
CostRatio as a ratio Cost2/Cost1. The value of CostRatio is esti-
mated by experts in product teams. In current practice, due to the
concerns about cost and capacity,CostRatio is set to 2 (i.e., precision
is valued more than recall). The optimum r value is determined by
minimizing the total misclassification cost with historical data. The
top r nodes are predicted faulty nodes. They are high risky nodes
and the VMs hosted on them should be migrated out.

4 EVALUATION
4.1 Research Questions
In this section, we evaluate our approach using real-world data. We
aim at answering the following research questions:
RQ1: How effective is the proposed approach in predicting
node failures in a cloud service system?

In this RQ, we evaluate the overall effectiveness of MING in
predicting node failures in a cloud service system. As classification
methods are commonly used in fault prediction, we also compare
MING with the baseline approaches that are implemented using
conventional classifiers including Logistic Regression, Random For-
est, LSTM, and SVM. To perform the comparison, before applying
the conventional classifiers, we convert features to the feature types
that can be consumed by the target classifiers (e.g., converting the
categorical data into numerical data). We then construct classifica-
tion models and compare the prediction results with those returned
by the proposed approach.
RQ2: Are the temporal and spatial features useful for
failure prediction ?

As described in Section 2, we collect both temporal and spatial
data for node failure prediction. In Phase 1 training, we construct
a LSTM and a Random Forest based prediction model to incorpo-
rate the temporal and spatial features, respectively. In this RQ, we
evaluate the usefulness of each type of the features. To answer this
RQ, we train the prediction mode using temporal and spatial data

484

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Lin et al.

separately, and compare the results with those achieved by MING
(which uses both types of data). To train the prediction model with
temporal data alone, only the LSTM model described in Section 3 is
needed. To train the prediction model with spatial data alone, only
the Random Forest model is needed. The rest of the settings remain
the same.
RQ3: Is the proposed ranking method effective ?

As described in Section 3, we propose a ranking method to rank
nodes by the fault probability (Section 3.3). In this RQ, we evalu-
ate if the proposed ranking method is effective by measuring the
effectiveness of MING that replaces the ranking model with a con-
ventional classification model (denoted asMINGc). To answer the
RQ, inMINGc , we replace the ranking model with SVM, Logistic
Regression, and Random Forest classifier, separately. The input to
the classifiers are still the combination of output vectors produced
by Phase 1 training. The rest of the settings remain the same be-
tween MING andMINGc . To enable comparison, the output of the
classifiers are ranked by the probability values.

In MING, we use LambdaMART as the ranking algorithm. To
show that MING is actually independent of a specific ranking al-
gorithm, we also experiment with a variant of MING, which re-
places LambdaMARTwith FastTree Ranker. The FastTree algorithm
[12, 26] is an implementation of FastRank. It builds each regression
tree (which is a decision tree with scalar values in its leave) in a
step wise fashion. We will compare the effectiveness of MING with
the two different rankers.

4.2 Evaluation Setup
4.2.1 Dataset. To evaluate the proposed approach, we collect data
from a production cloud service system. For offline training, we col-
lect over three month datasets and each dataset covers one month
period in 2017. The data are from part of the data centers, con-
taining over half a million of physical cloud computing nodes. All
faulty nodes over the period are selected as positive samples, while
healthy nodes (negative samples) are randomly selected with a 1:20
sampling rate. We use three datasets collected over three 7-day
periods after the training periods for testing. Note that for all nodes,
the feature data is collected at least 6 hours before the class label
data is collected. The 6-hour gap is intended to simulate real-world
usage (predicting node failures using the signals collected before
the failures actually happen). Table 2 summarizes the datasets used
in this experiment. Note that we did not apply the commonly-used
cross validation, because cross validation may not reflect the real re-
sults of prediction, and sometimes may overclaim the effectiveness.
More details will be discussed in Section 5.2.

Table 2: The experimental data

Training Period Test Period
Dataset 1 04/01/2017 - 04/30/2017 05/01/2017 - 05/07/2017
Dataset 2 05/01/2017 - 05/31/2017 06/01/2017 - 06/07/2017
Dataset 3 06/01/2017 - 06/30/2017 07/01/2017 - 07/07/2017

4.2.2 Tool Implementation. We implemented the proposed approach
by leveraging the various components provided by AzureML4,
4https://studio.azureml.net/

which is a production environment for development and deploy-
ment of machine learning models. The experimental evaluation is
running on a Windows Server 2012 with (Intel CPU E5-4657L v2
@2.40GHz 2.40 with 500 GB Memory).

4.2.3 Evaluation Metrics. Most of existing classification-based pre-
diction models use Precision/Recall/F1 measure to evaluate the
effectiveness of the models. In our experiments, we also use these
metrics as evaluation metrics (although there are more metrics for
evaluating a ranking-based model). Precision measures the per-
centage of identified faulty nodes that are actually faulty. Recall
measures the percentage of faulty nodes that are correctly identi-
fied over all the faulty nodes. F1 measure is the harmonic mean of
precision and recall, which weights recall and precision equally.

MING also ranks the nodes according to their failure-proneness.
To evaluate the ranking ability of MING, we compute the Preci-
sion@k values, which are the Precision value for top k nodes (k
= 10, 20, 50, 100, 200, and 500). An ideal failure prediction model
should be able to correctly identify the failure-prone nodes in the
top k returned results. Thus, the higher the metric value, the better
the prediction performance, especially in actual practice when the
cost of false positive is higher than false negative, as discussed in
Section 3.4.

4.3 Evaluation Results
RQ1: How effective is the proposed approach in predicting
node failures in a cloud service system?

Table 3 shows the evaluation results of MING in identifying
faulty nodes (the top r returned nodes). MING achieves good results
on all datasets and outperforms the baseline methods. The average
precision, recall, and F1-measure values are 92.4%, 63.5%, and 75.2%,
respectively. Considering the highly imbalanced nature of data and
the complexity of the problem, it is very challenging to achieve
both high recall and high precision. In our scenario, precision is
more important than recall, therefore we tradeoff some recall to
achieve higher precision. Our results show that MING outperforms
the baseline approaches that are implemented in conventional clas-
sification algorithms (SVM, Logistic Regression, Random Forest,
and LSTM) in both precision and recall. The average absolute im-
provement in F1-measure over Logistic Regression, SVM, Random
Forest, and LSTM is 21.7%, 17.4%, 13.3%, and 14.6% respectively.

We also evaluate the ranking ability of MING by examining the
top k returned results. Figure 4 shows the Precision@k values. For
the top 10, 20 and 50 returned nodes, the precision values achieved
by MING on all datasets are close to 100%. When the top 500 re-
turned nodes are examined, the precision values are still higher
than 92.0% on all datasets. The results show that MING can effec-
tively rank the faulty nodes and consistently achieve high precision.
We also compare the Precision@k results of MING with those of
the classification algorithms (SVM, Logistic Regression, Random
Forest, and LSTM). To enable the comparison, we rank the proba-
bility values returned by each classification algorithm. The results
are also shown in Figure 4. MING outperforms the classification
algorithms consistently, when Precision@k is concerned.

In MING, the faulty nodes are identified by selecting the optimal
set of top r nodes that minimize the total misclassification cost.
We also experimented with different thresholds (the r values) that

485

Predicting Node Failure in Cloud Service Systems ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 3: The effectiveness of MING

MING Logistic Regression (LR) SVM Random Forest LSTM
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Dataset 1 92.3% 64.2% 75.7% 69.8% 48.3% 57.1% 66.9% 53.4% 59.4% 71.6% 51.1% 59.6% 76.2% 52.3% 62.0%
Dataset 2 90.1% 67.3% 77.0% 78.6% 34.7% 48.1% 54.8% 61.1% 57.8% 80.6% 58.3% 67.7% 61.7% 60.4% 61.0%
Dataset 3 94.7% 59.1% 72.8% 59.7% 51.3% 55.2% 76.2% 44.6% 56.3% 76.3% 47.4% 58.5% 80.3% 46.3% 58.7%
Averaдe 92.4% 63.5% 75.2% 69.4% 44.8% 53.5% 66.0% 53.0% 57.8% 76.2% 52.3% 61.9% 72.7% 53.0% 60.6%

Figure 4: The Precision of the top k returned nodes

Figure 5: The ROC curve of the comparative approaches

classify faulty and healthy classes. The results are shown in Figure
5, where the ROC curve5 plots TPR (True Positive Rate) versus FPR
(False Positive Rate) with a varying threshold value. The results
show that MING outperforms the baseline approaches consistently
under different FPR/TPR ratios. For example, on Dataset 1, the AUC
(Area Under Curve) value achieved by MING is 0.91, while the value
for Logistic Regression, SVM, Random Forest and LSTM are 0.68,
0.80, 0.81, and 0.74, respectively.

In summary, the experimental results show that the proposed
approach is effective in predicting node failures in a cloud service
system and outperforms the baseline methods.

RQ2: Are the temporal and spatial features useful?

MING utilizes two base learners (Random Forest and LSTM) to
incorporate the temporal and spatial features, respectively. In this
RQ, we evaluate the usefulness of each type of the features. The
results are shown in Table 4.

5https://en.wikipedia.org/wiki/Receiver_operating_characteristic

If both types of the features are used, MING achieves an aver-
age F1-measure of 75.2%. If the temporal features are used alone,
only the LSTM model is trained and the average F1-measure drops
from 75.2% to 48.8%. If the spatial features are used alone, only the
Random Forest model is trained and the average F1-measure drops
from 75.2% to 57.1%. We can see the ensemble model adopted by
MING achieves the best overall results. Also, the results achieved by
spatial features are higher that those achieved by temporal features,
indicating that the spatial features are more predictive than the
temporal features.

In summary, the experimental results show that both types of
features are useful for node failure prediction, and the spatial fea-
tures have more predictive power. The results also confirm that
each base learner is useful and the proposed ensemble model is
more effective.
RQ3: Is the proposed ranking method effective ?

In this RQ, we evaluate if the propose ranking method is effective
by comparing MING (the proposed approach with the ranking
model) andMINGc – the variant of MING that replaces the ranking

486

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Lin et al.

Table 4: The effectiveness of the ensemble model

Temporal+Spatial (MING) Temporal only (LSTM) Spatial only (Random Forest)
Precision Recall F1 Precision Recall F1 Precision Recall F1

Dataset 1 92.3% 64.2% 75.7% 70.6% 36.2% 47.9% 66.5% 49.3% 56.6%
Dataset 2 90.1% 67.2% 77.0% 63.8% 46.7% 53.9% 72.1% 54.7% 62.2%
Dataset 3 94.7% 59.1% 72.8% 51.4% 39.6% 44.7% 79.6% 39.1% 52.4%
Averaдe 92.4% 63.5% 75.2% 61.9% 40.8% 48.8% 72.7% 47.7% 57.1%

Figure 6: Ranking vs. Classification (average Precision@k)

model with a conventional classifier such as Random Forest (RF),
SVM, and Logistic Regression (LR). The results are shown in Table
5. Clearly, MING outperforms MINGc with all classifiers in both
precision and recall. We also evaluate the accuracy of the top k
returned results. Figure 6 shows the average Precision@k values
on all the three datasets. Clearly, MING outperformsMINGc under
all k values. Furthermore, MINGr (FastTreeRanker) - the MING
variant with the FastTree Ranker also outperforms MINGc with
all classifiers and achieves comparable performance with MING.
This indicates that the results achieved by MING is independent of
a specific ranker that we have chosen. It is the general design of a
ranking model in our approach that helps improve the effectiveness
of MING.

Table 5: The effectiveness of the ranking model
Precision Recall F1

MING 92.4% 63.5% 75.2%
MINGc with Random Forest 85.1% 57.6% 68.7%

MINGc with SVM 79.3% 56.7% 66.1%
MINGc with LR 81.4% 52.6% 63.9%

MINGr (FastTreeRanker) 91.3% 62.4% 74.1%

4.4 Discussions
4.4.1 Why Does MING Work. To build an effective prediction
model, we collected more than 210 features from a wide variety
of data sources. The features identified from temporal and spatial
data contain early signals of node failures. The prediction model is
trained using a large amount of real-world data. It is widely known
that a traditional machine learning algorithm works better on a
certain type of features, while performs weakly on other types of
features. To work with all types of features, feature conversion (like
converting categorical features into numerical features) needs to be

performed before training a model. However, a lot of information
could be lost during the conversion process, thus decreasing the
accuracy. As shown by our experimental results, the two base mod-
els in MING (the LSTM model and the Random Forest model) can
better capture the characteristics of temporal and spatial features,
therefore producing better results.

MING embeds the intermediate output of the two base models
as the feature input for a ranking model and formulates the node
failure prediction problem as a ranking problem. By optimizing
the order of failure-proneness, the faulty nodes with higher failure-
proneness are raised to the top, resulting in the high accuracy of
the predicted results. The order can be utilized in VM allocation and
live migration practice as VMs can be moved to a much healthier
node. Furthermore, traditional classification algorithms are natu-
rally sensitive to the distribution of classes (as they optimize to split
the data instances into classes), while a ranking-based method like
MING focuses on the order of data instances and is therefore less
sensitive to the imbalanced class problem.

4.4.2 Evaluation Metrics. Much research work [10, 45, 46] show
that in a large software system, the distribution of faults is skewed
- that a small number of modules accounts for a large proportion of
the faults. In our work, we find that the distribution of faulty nodes
is also skewed. The ratio between faulty and healthy nodes could be
as high as 1:1000. The highly imbalanced data imposes challenges
for failure prediction. In general, it is difficult for a machine learning
technique to distinguish a small number of faulty modules from a
large number of modules.

The highly imbalanced failure data also has implications on eval-
uationmetrics. Each day, out of all the computing nodes in the cloud
service system we studied, less than 0.1% of the nodes encounter
failures. While the failure rate of 0.1% may seem insignificant, the
absolute number of failed nodes is significant as the total number of
nodes is very large. Therefore, the 0.1% failure rate has significant
adverse impact on service availability.

In literature, Zhang [47] also pointed out that prediction results
may not be always satisfactory in the presence of imbalanced data
distribution. They found that high probability of detection (pd , i.e.,
true-positive rate) and low probability of false alarm (p f , i.e., false-
positive rate) do not necessarily lead to high precision. The reason
is that the percentage of faulty modules could be very small. The
Zhangs’ equation for Precision is defined as follows:

Precision =
TP

TP + FP
=

1
1 + F P

T P
=

1
1 + NEG∗PF

POS∗PD
, (1)

where NEG is the number of negative instances and POS the number
of positive instances. From the Equation (1), we can see that even if
pd is high and p f is low, the Precision would be low if the number

487

Predicting Node Failure in Cloud Service Systems ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

of negative instances (NEG) is much more than the number of
positive instances (POS). Therefore, the metrics p f , pd , and the
ROC curves should be used with caution. In our study, we show
Recall/Precision values as well as the ROC curves to confirm the
effectiveness of the proposed approach.

4.4.3 Oversampling. Before constructing a prediction model, one
could apply an imbalanced data handling approach, such as SMOTE
[6], to balance the data. SMOTE is a commonly used oversampling
technique in which the minority class is over-sampled by creating
"synthetic" examples through finding k-nearest neighbors along
the minority class. We tried to apply SMOTE to our approach but
did not get promising results. This is because after balancing there
are still many false positives due to the highly imbalanced data.

4.4.4 Parameter Settings. In the experiments and comparative eval-
uations described in Section 4.3, we use the default settings of the
machine learning algorithms. It has been observed that there is a
bias in the comparison between different algorithms with default
parameter settings [35]. To evaluate the impact of parameter set-
tings, we have also experimented with different values of several
important parameters: a) iterate the "output vector size" parameter
used by LSTM and Random Forest from 100 to 150 with a step of
10, b) iterate "the number of boosting iterations" parameter used
by LambdaMART from 100 to 150 with a step of 10, c) iterate the
"number of leaves" parameter used by Random Forest from 20 to
100, with a step of 20. With different parameter settings, the result-
ing average F1 scores on three datasets are quite stable - ranging
from 74.0% to 76.1% (with a delta of -1.2% to +0.9% compared to the
average F1-measure of 75.2% shown in Table 3). These results show
that MING is insensitive to parameter settings.

4.4.5 Threats to Validity. We have identified the following threats
to validities:

Subject systems: In our experiments, we only collect data from
one cloud service system of one company. Therefore, our results
might not be generalizable to other systems. However, it is chal-
lenging to get access to data from many cloud systems. The system
we studied is a typical, large-scale cloud service system, from which
sufficient data can be collected. Furthermore, we have applied our
approach in the maintenance of an actual cloud service system.
In future, we will reduce this threat by evaluating MING on more
subject systems and report the evaluation results.

Evaluation metrics:We used the Precision/Recall/F-measure
metrics to evaluate the prediction performance. These metrics have
been widely used to evaluate the effectiveness of a prediction model.
Prior work [36] points out that a broader selection of metrics should
be used in order to maximize external validity. In our future work,
we will reduce this threat by experimenting with more evaluation
measures such as the cumulative lift chart (CLC) and the fault-
percentile-average (FPA) metrics used in [43].

5 SUCCESS STORIES
5.1 Success Stories
Wehave successfully appliedMING to themaintenance of Service X,
which is a large-scale cloud service system in Microsoft. Service X
allows developers and IT professionals to build, deploy, and manage

applications. The cloud service achieves global scale on a worldwide
network of data centers across many regions.

Figure 7: The %failures captured vs. the %nodes examined

MING is currently used by Service X to preferentially select
healthier nodes for VM allocation. The current in-production model
is trained and scored using AzureML. The automation relies on the
AzureML batch web service feature. We invoke daily jobs across
the entire Azure stack to refresh daily the failure-proneness scores
of all the nodes in Service X.

After deploying MING, the product team computes the percent-
age of failures captured by the nodes that are ranked by their failure-
proneness score. The results are shown in Figure 7. In a typical day,
the top 1% most failure-prone nodes predicted by MING capture
above 60% of the failures in the next day. The product team also
conducted an A/B testing in a large-scale cloud environment. The
results show that MING is able to intelligently allocate VMs to more
healthier nodes and has achieved above 30% reduction in these new
allocated VMs’ failure rate.

The ability to predict node failure in cloud service systems also
helped product teams diagnosis service problems. We work with
domain experts in product teams to identify the influential features
using feature selection methods, and help product teams analyze
the root causes of the node failures based on the influential features.
For example, we found that upgrading system software to a specific
version caused a potential node failure, and some configuration
changes to the cluster also resulted in node failure. We even found
that, the nodes on the upper layer rack have much higher failure
probability than the nodes on the lower rack (as the hot air rises
up to the top rack).

5.2 Lessons Learned
Freshness of the training data: Extending the training period
does not bring many benefits to the prediction accuracy. Currently
we use one month data for training. Extending the length of the
training period can only improve the results slightly. The reason is
that, the cloud service systems are evolving rapidly and the fault
patterns vary a lot over time. Also, new applications, new deploy-
ment, and new versions happen frequently and could introduce
new faults that are previously unseen. Learning from very old data
will not have much gain in the prediction, as some old fault patterns
could have vanished. Therefore, in practice we need to train the

488

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Lin et al.

model frequently (e.g., daily) with new data, in order to catch the
new fault patterns emerged recently.
The time gap between data and label: As we are dealing with
a prediction problem, when training the model, we need to take
care of the time gap between the collection of feature data and the
collection of labels. If we did not set the time gap between them, the
model could learn from some feature data coming with the failures.
However, in the case of failure prediction, we need features that
are early indicators of failures. The feature data collected at the
time of failure may not have predictive power. In practice, to secure
the time gap, we collect feature data at least 6 hours before the
collection of labels. In this way, we always learn from early signals.
Cross-validation and online prediction: Cross-validation is of-
ten used to evaluate machine learning models. A k-fold cross-
validation randomly divides a data set into k partitions and uses
k − 1 partitions to train the prediction model and the remaining 1
partition to test the model. Therefore, it is possible that knowledge
that should not be known at the time of prediction is utilized in
cross-validation. For example, an incident may cause many nodes to
fail around the same time. In cross-validation, data about these new
failures may be randomly selected for training, which increases the
prediction accuracy in testing for the nodes affected by the same
incident around the same time. Therefore, cross-validation is not
suitable for evaluating our model in practice, even though it can
lead to better results than online prediction. In real-world online
prediction, training and testing data are strictly split by time and
the testing period is always after the training period. Therefore, the
characteristics of data appear in the future is not used for training.
The problem of cross-validation in an online prediction scenario is
also observed by others [34].

6 RELATEDWORK
6.1 Failure Prediction
In recent years, we have witnessed a lot of interest in developing
software defect prediction models [5, 8, 17, 18, 21, 33, 43, 44]. It
is widely believed that some internal properties of software (e.g.,
metrics) have relationship with the external properties (e.g., quality).
Software defect prediction refers to building a prediction model
for new software modules using historical metric and fault data
collected from existing projects. For example, Menzies et al. [25]
performed an extensive study on 8 NASA datasets using three
classification techniques with 38 static code metrics. Nam et al.[29]
proposed a heterogeneous defect prediction method that matches
up different metrics in different projects. Jing et al. [21] proposed a
heterogeneous defect prediction method based on Unified Metric
Representation and Canonical Correlation Analysis. Kim et al. [22]
addressed the data quality issue in software defect prediction and
found that a small degree of data noise does not affect the prediction
results significantly. Recently, deep learning techniques have been
applied to software defect prediction as well [39, 42].

There are also related work on predicting disk failures and com-
puting system failures [3, 13, 30, 31, 41]. For example, Pinheiro [30]
attempted to find variables that may be used to predict disk failures
from observations of a large disk drive population in a produc-
tion Internet services deployment. Gaber et al. [13] used machine
learning algorithms to extract compound features representing the

behavior of the drives and predict the failure of the drives. Xu et al.
[41] utilized both disk-level sensor data and system-level signals
for predicting disk errors in cloud systems.

Our work is about node failure prediction for a cloud service
system, which has a larger scope and requires analyzing more het-
erogeneous features. Node failure can be triggered by any software
or hardware issue, or a mixture of both, which brings new chal-
lenges compared to software/disk failure prediction.

6.2 Analysis of Failures in Cloud Systems
There have been some previous studies in the literature on failures
of a data center. For example, Ford et al. [11] studied data collected
from Google storage systems over a one year period , and charac-
terized the sources of faults contributing to unavailability. Their
results indicate that cluster-wide failure events should be paid more
attention during the design of system components, such as replica-
tion and recovery policies. Gill et al. [14] presented a large-scale
analysis of failures in a data center network. They characterized
failure events of network links and devices, estimated their failure
impact, and analyzed the effectiveness of network redundancy in
masking failures. Zhou et al. [48] performed an empirical study
on the quality issues of a production big data platform used in
Microsoft. They analyzed 210 real service quality issues and investi-
gated the common symptom, causes and mitigation solutions. Their
finding shows that 21.0% of escalations are caused by hardware
faults and 36.2% are caused by system side defects.

Several methods [40] have also been proposed to detect node
failures in a cloud data center based on the network structure.
Besides, there have been studies on detecting the "gray" failures,
which are "component failures whose manifestations are fairly
subtle and thus defy quick and definitive detection" [20]. These
approaches provide solutions to detect node failures and improve
the service quality, but they did not provide systematic methods
for predicting node failure in cloud service systems.

7 CONCLUSION
To maintain and improve service availability of a cloud service sys-
tems, we propose MING, a node failure prediction approach. Using
MING, we can intelligently allocate/migrate VMs to the health-
ier nodes so that these VMs are less likely to suffer from node
failures. We propose an ensemble of machine learning models to
combine heterogeneous data from diverse sources. To better han-
dle the highly imbalanced data, we rank the nodes according to
their failure-proneness and select the top r nodes that minimize the
misclassification cost. We have evaluated the proposed approach
using real-world data and have successfully applied MING to the
maintenance of a production cloud service system. We believe that
given the importance of service availability, failure predictors will
play increasingly important roles in the design and maintenance of
cloud service systems. Our proposed approach is an important step
in this direction.

ACKNOWLEDGEMENT
We specially thank our product team partners Ervin Peretz, Geoffrey
Goh, David Dion, Bertus Greeff, John Miller, Girish Bablani for the
collaboration and suggestion, and our intern students Pu Zhao,
Yuchen Sun, Wenchi Zhang for the development and experiments.

489

Predicting Node Failure in Cloud Service Systems ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] Amazon. 2017. Amazon EBS Product Details. https://aws.amazon.com/ebs/

details/. [Online; accessed 23-Oct-2017].
[2] David Ameller, Matthias Galster, Paris Avgeriou, and Xavier Franch. 2016. A

Survey on Quality Attributes in Service-based Systems. Software Quality Journal
24, 2 (June 2016), 271–299.

[3] Mirela Madalina Botezatu, Ioana Giurgiu, Jasmina Bogojeska, and Dorothea
Wiesmann. 2016. Predicting Disk Replacement towards Reliable Data Centers.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 39–48.

[4] Christopher J.C. Burges. 2010. From RankNet to LambdaRank to LambdaMART:
An Overview. In Microsoft Research Technical Report MSR-TR-2010-82. Microsoft.

[5] Gerardo Canfora, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Anni-
bale Panichella, and Sebastiano Panichella. 2015. Defect prediction as a multiob-
jective optimization problem. Software Testing, Verification and Reliability 25, 4
(2015), 426–459.

[6] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
2002. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial
Intelligence Research 16 (2002), 321–357.

[7] Christopher Clark, Keir Fraser, Steven H, Jacob Gorm Hansen, Eric Jul, Chris-
tian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live Migration of Virtual
Machines. In In Proceedings of the 2nd ACM/USENIX Symposium on Networked
Systems Design and Implementation (NSDI). 273–286.

[8] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2012. Evaluating defect
prediction approaches: a benchmark and an extensive comparison. Empirical
Software Engineering 17, 4-5 (2012), 531–577.

[9] Florin Dinu and T.S. Eugene Ng. 2012. Understanding the Effects and Implica-
tions of Compute Node Related Failures in Hadoop. In Proceedings of the 21st
International Symposium on High-Performance Parallel and Distributed Computing
(HPDC’12). 187–198.

[10] Norman E. Fenton and Niclas Ohlsson. 2000. Quantitative Analysis of Faults and
Failures in a Complex Software System. IEEE Transactions on Software Engineering
26, 8 (Aug. 2000), 797–814.

[11] Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh
Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. 2010. Availability in
Globally Distributed Storage Systems. In Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation (OSDI’10). USENIX Association,
Berkeley, CA, USA, 61–74.

[12] Jerome H. Friedman. 2000. Greedy Function Approximation: A Gradient Boosting
Machine. Annals of Statistics 29 (2000), 1189–1232.

[13] Shiri Gaber, Oshry Ben-Harush, and Amihai Savir. 2017. Predicting HDD Failures
from Compound SMART Attributes. In Proceedings of the 10th ACM International
Systems and Storage Conference (SYSTOR ’17). ACM, Article 31, 31:1–31:1 pages.

[14] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding
network failures in data centers: measurement, analysis, and implications. In
SIGCOMM. 350–361.

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[16] Georgios Gousios and Diomidis Spinellis. 2009. Alitheia Core: An Extensible
Software Quality Monitoring Platform. In ICSE ’09: Proceedings of the 31st Inter-
national Conference on Software Engineering — Formal Research Demonstrations
Track. IEEE, 579–582.

[17] Jeremy Greenwald, Tim Menzies, and Art Frank. 2007. Data Mining Static Code
Attributes to Learn Defect Predictors. IEEE Transactions on Software Engineering
33 (2007), 2–13.

[18] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. 2012.
A systematic literature review on fault prediction performance in software engi-
neering. IEEE Transactions on Software Engineering 38, 6 (2012), 1276–1304.

[19] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (Nov. 1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.
8.1735

[20] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R. Lorch, Yingnong Dang,
Murali Chintalapati, and Randolph Yao. 2017. Gray Failure: The Achilles’ Heel
of Cloud-Scale Systems. In Proceedings of the 16th Workshop on Hot Topics in
Operating Systems (HotOS ’17). ACM, New York, NY, USA, 150–155.

[21] Xiao-Yuan Jing, Fei Wu, Xiwei Dong, Fumin Qi, and Baowen Xu. 2015. Hetero-
geneous cross-company defect prediction by unified metric representation and
CCA-based transfer learning. In FSE. 496–507.

[22] Sunghun Kim, Hongyu Zhang, Rongxin Wu, and Liang Gong. 2011. Dealing with
Noise in Defect Prediction. In Proceedings of the 33rd International Conference on
Software Engineering (ICSE ’11). ACM, New York, NY, USA, 481–490.

[23] Zheng Li, He Zhang, Liam O’Brien, Rainbow Cai, and Shayne Flint. 2013. On
evaluating commercial Cloud services: A systematic review. Journal of Systems
and Software 86, 9 (2013), 2371–2393.

[24] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Found. Trends Inf.
Retr. 3, 3 (March 2009), 225–331.

[25] Tim Menzies, Jeremy Greenwald, and Art Frank. 2007. Data mining static code
attributes to learn defect predictors. IEEE Transactions on Software Engineering
33, 1 (2007), 2–13.

[26] Microsoft. 2017. Machine Learning Fast Tree. https://docs.microsoft.com/en-us/
machine-learning-server/python-reference/microsoftml/rx-fast-trees

[27] Microsoft. 2017. Microsoft Azure. https://azure.microsoft.com/en-au/services/
storage/unmanaged-disks/. [Online; accessed 23-Oct-2017].

[28] Ivan Mistrik, Rami Bahsoon, Peter Eeles, Roshanak Roshandel, and Michael
Stal. 2014. Relating System Quality and Software Architecture (1st ed.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[29] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan. 2017. Heterogeneous Defect
Prediction. IEEE Transactions on Software Engineering PP, 99 (2017), 1–1. https:
//doi.org/10.1109/TSE.2017.2720603

[30] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. 2007. Failure
Trends in a Large Disk Drive Population. In Proceedings of the 5th USENIX Con-
ference on File and Storage Technologies (FAST ’07). USENIX Association, Berkeley,
CA, USA, 2–2.

[31] Teerat Pitakrat, André van Hoorn, and Lars Grunske. 2013. A Comparison of
Machine Learning Algorithms for Proactive Hard Disk Drive Failure Detection.
In Proceedings of the 4th International ACM SIGSOFT Symposium on Architecting
Critical Systems (ISARCS ’13). ACM, New York, NY, USA, 1–10. https://doi.org/
10.1145/2465470.2465473

[32] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence Learn-
ing with Neural Networks. In Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2 (NIPS’14). MIT Press, Cambridge,
MA, USA, 3104–3112. http://dl.acm.org/citation.cfm?id=2969033.2969173

[33] Mark Syer, Meiyappan Nagappan, Bram Adams, and Ahmed E. Hassan. 2015.
Replicating and Re-evaluating the Theory of Relative Defect-Proneness. IEEE
Transactions on Software Engineering 41, 2 (2015), 176–197.

[34] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. 2015. Online Defect
Prediction for Imbalanced Data. In Proceedings of the 37th International Conference
on Software Engineering - Volume 2 (ICSE ’15). IEEE Press, Piscataway, NJ, USA,
99–108. http://dl.acm.org/citation.cfm?id=2819009.2819026

[35] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. 2016. Auto-
mated Parameter Optimization of Classification Techniques for Defect Prediction
Models. In 2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE). 321–332.

[36] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. 2016. Com-
ments on ’Researcher Bias: The Use of Machine Learning in Software Defect
Prediction’. IEEE Transactions on Software Engineering 42, 11 (Nov 2016), 1092–
1094.

[37] Scott Tilley. 2012. Software Testing in the Cloud: Perspectives on an Emerging
Discipline: Perspectives on an Emerging Discipline. IGI Global.

[38] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. 2010. Characterizing
cloud computing hardware reliability. In SOCC. ACM, New York, NY, USA, 193–
204.

[39] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic
features for defect prediction. In ICSE. 297–308.

[40] Lei Xu, Wenzhi Chen, Zonghui Wang, Huafei Ni, and Jiajie Wu. 2012. Smart Ring:
A Model of Node Failure Detection in High Available Cloud Data Center. Springer
Berlin Heidelberg, Berlin, Heidelberg, 279–288.

[41] Yong Xu, Kaixin Sui, Randolph Yao, Hongyu Zhang, Qingwei Lin, Yingnong Dang,
Peng Li, Keceng Jiang, Wenchi Zhang, Jian-Guang Lou, Murali Chintalapati, and
Dongmei Zhang. 2018. Improving Service Availability of Cloud Systems by
Predicting Disk Error. In 2018 USENIX Annual Technical Conference, USENIX ATC
2018, Boston, MA, USA, July 11-13, 2018. 481–494.

[42] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun. 2015. Deep Learning for Just-in-
Time Defect Prediction. In 2015 IEEE International Conference on Software Quality,
Reliability and Security. 17–26. https://doi.org/10.1109/QRS.2015.14

[43] X. Yang, K. Tang, and X. Yao. 2015. A Learning-to-Rank Approach to Software
Defect Prediction. IEEE Transactions on Reliability 64, 1 (March 2015), 234–246.

[44] Feng Zhang, Audris Mockus, Iman Keivanloo, and Ying Zou. 2016. Towards
building a universal defect prediction model with rank transformed predictors.
Empirical Software Engineering 21, 5 (2016), 1–39.

[45] Hongyu Zhang. 2008. On the Distribution of Software Faults. IEEE Transactions
on Software Engineering 34, 2 (March 2008), 301–302.

[46] Hongyu Zhang. 2009. An investigation of the relationships between lines of
code and defects. In 2009 IEEE International Conference on Software Maintenance.
274–283.

[47] Hongyu Zhang and Xiuzhen Zhang. 2007. Comments on “Data Mining Static
Code Attributes to Learn Defect Predictors”. IEEE Transactions on Software
Engineering 33, 9 (2007), 635–637.

[48] H. Zhou, J. G. Lou, H. Zhang, H. Lin, H. Lin, and T. Qin. 2015. An Empirical Study
on Quality Issues of Production Big Data Platform. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, Vol. 2. 17–26.

490

https://aws.amazon.com/ebs/details/
https://aws.amazon.com/ebs/details/
http://www.deeplearningbook.org
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://docs.microsoft.com/en-us/machine-learning-server/python-reference/microsoftml/rx-fast-trees
https://docs.microsoft.com/en-us/machine-learning-server/python-reference/microsoftml/rx-fast-trees
https://azure.microsoft.com/en-au/services/storage/unmanaged-disks/
https://azure.microsoft.com/en-au/services/storage/unmanaged-disks/
https://doi.org/10.1109/TSE.2017.2720603
https://doi.org/10.1109/TSE.2017.2720603
https://doi.org/10.1145/2465470.2465473
https://doi.org/10.1145/2465470.2465473
http://dl.acm.org/citation.cfm?id=2969033.2969173
http://dl.acm.org/citation.cfm?id=2819009.2819026
https://doi.org/10.1109/QRS.2015.14

	Abstract
	1 Introduction
	2 Improving Service Availability of Cloud Systems
	2.1 Cloud Service Systems
	2.2 Service Availability
	2.3 Improving Service Availability by Node Failure Prediction

	3 The Proposed Approach
	3.1 Overview
	3.2 Phase 1 Training
	3.3 Phase 2 Training
	3.4 Cost-sensitive Thresholding

	4 Evaluation
	4.1 Research Questions
	4.2 Evaluation Setup
	4.3 Evaluation Results
	4.4 Discussions

	5 Success Stories
	5.1 Success Stories
	5.2 Lessons Learned

	6 Related Work
	6.1 Failure Prediction
	6.2 Analysis of Failures in Cloud Systems

	7 Conclusion
	References

