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Abstract—Many software systems are highly configurable,
which provide a large number of configuration options for users
to choose from. During the maintenance and operation of these
configurable systems, it is important to estimate the system
performance under any specific configurations and understand
the performance-influencing configuration options. However, it is
often not feasible to measure the system performance under all
the possible configurations as the combination of configurations
could be exponential. In this paper, we propose PerLasso, a
performance modeling and prediction method based on Fourier
Learning and Lasso (Least absolute shrinkage and selection
operator) regression techniques. Using a small sample of mea-
sured performance values of a configurable system, PerLasso
produces a performance-influence model, which can 1) predict
system performance under a new configuration; 2) explain the
influence of the individual features and their interactions on
the software performance. Besides, to reduce the number of
Fourier coefficients to be estimated for large-scale systems,
we also design a novel dimension reduction algorithm. Our
experimental results on four synthetic and six real-world datasets
confirm the effectiveness of our approach. Compared to the
existing performance-influence models, our models have higher
or comparable prediction accuracy.

I. INTRODUCTION

Many software systems are highly configurable. User can

customize these systems by selecting a set of configuration op-

tions (or features). For example, the popular SQLite database

system has 39 configuration options and their combination

can reach up to 3 millions [21]. As different configurations

may lead to different system performance, it is important to

predict the performance of a system under a certain configu-

ration and to understand how different configuration options

and their interactions influence system performance. In this

way, engineers can make rational configuration decisions that

satisfy user’s quality requirements during the maintenance and

operation of the configurable systems.

Software engineering researchers have proposed to sample

a small set of configurations, measure system performance un-

der these configurations, and then build performance-influence

models that describe how configuration options and their

interactions influence the system performance [20–22, 28].

With the performance-influence models, it becomes easier to

understand, debug and optimize highly configurable software

systems [20]. Specifically, engineers can use the model to

estimate the system performance under any configurations and

check if the system behaves as expected. If not, the model can

be used for fault diagnosis.

To build the performance-influence model, one approach

was suggested in [20–22], namely SPLConqueror. The idea

is to formulate the system performance value as a linear

combination of functions which represent the influence of a

single configuration option and the interaction among multiple

configuration options. Stepwise linear regression is employed

to learn the model from a sample set of measurable config-

urations and forward-backward feature selection is utilized

to reduce the dimensionality problem of handling a very

large number of configuration options and their interactions.

Besides, several sampling heuristics and experimental designs

for configuration options are combined with the suggested

learning method to achieve good prediction accuracy.

Recently, Zhang et al. [28] proposed to formulate the

software performance function as a Boolean function. Us-

ing Fourier transform of the Boolean function, the task of

estimating the performance function becomes estimating its

associated Fourier coefficients from a small set of samples.

The Fourier coefficients are estimated by using the standard

formula of computing Fourier coefficients of Boolean function

on the sample set. The advantage of this approach is that

it can derive a sample size that guarantees a theoretical

boundary of the prediction accuracy. The disadvantage is that

the number of samples required to achieve a desired accuracy

is large (sometimes even more than the whole population of

the system), especially for a relatively small system [28].

In this paper, we propose a new approach called PerLasso,

which formulates the performance-influence model of config-

urable software using Fourier transformation as proposed in

[28]. However, unlike [28], we apply the Lasso regression

technique [25] to improve the accuracy of the Fourier esti-

mates. Lasso regression [25], also called L1 regression, is a re-

gression analysis method that performs both variable selection

and regularization in order to enhance the prediction accuracy

and interpretability of the statistical model it produces. The
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idea of using Lasso is inspired by the fact that the Fourier

coefficients of software performance functions are usually

very sparse (i.e., only a small number of configurations have

significant impact on system performance) [10, 13, 20, 21, 28].

Applying this domain knowledge to the learning process by

incorporating Lasso to the linear regression, we can reduce

the estimates errors significantly.

A challenge when forming the performance prediction

problem as a linear regression problem is that the number

of parameters required to be estimated is exponential [20–

22, 28]. Especially, for large configurable software systems,

the number of parameters to be estimated can be so large that

it causes high computation time. Even worse, the computer

memory may not have enough space to do the computation. To

address this challenge, we design a novel dimension reduction

algorithm to remove the non-contributing Fourier coefficients

of the linear regression sequentially. To be more precise, we

suggest to split the whole configurations space into small

groups, and within each group, we construct a Lasso regres-

sion model to determine which configurations have Fourier

coefficients influence noticeably to the performance value.

After obtaining the list of these configurations, we reconstruct

the linear regression model and apply Lasso again to estimate

the reduced dimensional Fourier coefficients parameters.

We have implemented PerLasso and evaluated it on four

synthetic and six real-world datasets. The experimental results

show that PerLasso can identify the influence of configuration

options and their interactions on the system performance.

Furthermore, PerLasso can achieve higher prediction accu-

racy compared to other state-of-the-art performance-influence

models.

In summary, our contributions are as follows:

1) We propose a new approach to obtain performance-

influence models of binary configurable software systems

using Fourier transformation and Lasso regression techniques.

2) We design a novel dimension reduction technique such

that the proposed approach can work effectively with large-

scale configurable software systems.

3) We implement our proposed method, namely PerLasso,

and evaluate its effectiveness by experiments on four synthetic

and six real-world datasets.

The paper is organized as follows. Section II describes

the background of the problem. Section III describes the

proposed approach PerLasso in detail. Section IV describes

our experimental design and results. We discuss our results

in Section V and related work in Section VI. Finally, the

conclusion is drawn in Section VII.

II. BACKGROUND

A. Performance modeling for highly configurable software
systems

Generally, a performance function of a software system with

n binary configurations options can be modelled as follows

[28]:

f(x1, x2, . . . , xn) : {0, 1}n → R. (1)

where xi (i = 1, ..., n) is the variable that stores Boolean value

indicating if a configuration option ith is selected. Specifically,

when the ith option is selected, the value of the variable xi is

1 and when it is deselected, the value of xi is 0. The truth table

of a performance function f(x1, x2, . . . , xn) can be described

in Table I.

TABLE I
THE TRUTH TABLE OF A PERFORMANCE FUNCTION

x1 x2 . . . xn f(x)
0 0 . . . 0 y1
1 0 . . . 0 y2
. . . . . . .
1 1 . . . 1 y2n

To build a cost-effective performance model, it is important

that only a small sample of measured performance values are

used. Furthermore, such a model should be able to reflect

the influence of configuration options on system performance

and be able to predict system performance under a new

configuration.

B. Performance modeling with Fourier Learning

Through Fourier transform, any Boolean function f(x) can

be rewritten as follows [14]:

f(x) :=
∑

z∈{0,1}n
f̂(z)χz(x), (2)

where χz(x) are computed as,

χz(x) :=

{
+1 if

∑n
i=1 zixi mod 2 = 0

−1 if
∑n

i=1 zixi mod 2 = 1
, (3)

f̂(z) are called Fourier coefficients and χz(x) are called

character functions. As proven in [14], any Boolean function

is represented uniquely by its Fourier coefficients, hence, the

problem of estimating a function f(x), x ∈ {0, 1}n now

becomes the problem of estimating its Fourier coefficients

f̂(z), z ∈ {0, 1}n.

Zhang et al. [28] applied this idea to the problem of

predicting software performance. For a configurable software,

suppose we have a set of configurations S ⊂ {0, 1}n with their

corresponding performance function values f(x), x ∈ S. The

task of predicting software performance of the whole con-

figurations becomes estimating its Fourier coefficients from

the sampled data, i.e. f(x), x ∈ S. The core idea of their

algorithm is that, instead of calculating the Fourier coefficients

using the whole dataset as:

f̂(z) = 〈f, χz〉 = 1

2n

∑
x∈{0,1}n

f(x)χz(x), (4)

now f̂(z) can be estimated as:

f̂(z) = 〈f, χz〉 = 1

|S|
∑
x∈S

f(x)χz(x). (5)

The main benefit of the algorithm proposed in [28] is

to provide theoretical guarantee of prediction accuracy and
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confidence level. However, as acknowledged in [28], one

problem with this algorithm is that it cannot be applied to

small datasets as for a small dataset, the required number of

samples could be larger than the entire valid space, for any

reasonable user-defined accuracy level. Even for large dataset,

the number of samples required to achieve a good prediction

accuracy is very large.

III. PROPOSED APPROACH

In this section, we describe in detail our proposed approach,

namely PerLasso. We first describe how a performance model

can be constructed from a small set of measurement data using

Fourier learning and Lasso regression techniques (Section

III.A). To reduce the number of Fourier coefficients to be

estimated for large-scale systems, we also design a novel

dimension reduction algorithm (Section III.B). The perfor-

mance model can be used to identify performance-influencing

configuration options and their interactions (Section III.C),

and to predict performance for a new configuration (Section

III.D). Finally, we also describe our tool implementation in

Section III.E.

A. Performance modeling with Fourier Learning and Lasso
Regression

Given a subset configurations S = {x1, x2, . . . , xN} and

its performance values f(x), x ∈ S, we can apply (2) to

construct the Fourier coefficients estimation problem as a

linear regression problem:⎡
⎢⎢⎣
f(x1)
f(x2)
...

f(xN )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
χz1(x1) χz2(x1) ... χz2n (x1)
χz1(x2) χz2(x2) ... χz2n (x2)

... ... ... ...
χz1(xN ) χz2(xN ) ... χz2n (xN )

⎤
⎥⎥⎦
⎡
⎢⎢⎣
θ1

θ2

...
θ2

n

⎤
⎥⎥⎦ ,

(6)

where θ = [θ1, θ2, . . . , θ2
n

]T = [f̂(z1), f̂(z2), . . . , f̂(z2
n

)]T

are the Fourier coefficients and N is the cardinality of the

set S. The goal here is to estimate the Fourier coefficients θ
based on based on f(x), x ∈ S.

One difficulty in solving (6) is that in reality, we often have

N � 2n as the main purpose of the software performance

prediction problem is to predict the performance values from

a limited number of samples. With this condition, the problem

(6) becomes ill-posed, meaning that there is an infinite number

of parameters θ̂ that can obtain the perfect fit in (6). However,

these estimates normally do not fit well to the new data. The

key idea for solving ill-posed problems is to restrict the class

of solutions by adding priori knowledge about the parameter

θ. That is, among all the solution candidates θ̂ of (6) (i.e.

those solutions that satisfy (6)), we pick only those solutions

that satisfy our prior knowledge. For software performance

functions, their Fourier coefficients are always very sparse,

i.e. most of Fourier coefficients f̂(z), z ∈ {0, 1}n are zeros.

The reason is that only a small number of configurations have

significant impact on system performance [10, 13, 20, 21].

Hence, our goal here is to find a parameter θ̂ that fits perfectly

in (6) and it must be sparse.

Up till now, the two most popular techniques to find a sparse

estimate for a linear regression problem are the L1 norm regu-

larization (Lasso) [25] and the nuclear norm regularization [3].

In this paper, we choose to utilize the L1 norm regularization

(Lasso) due to its simplicity and effectiveness [25]. Applying

Lasso to the linear regression problem in (6), we can find

a sparse estimate of θ by solving the following optimization

problem,

min
θ

1

2
‖Y −Xθ‖22 + λ‖θ‖1, λ ∈ R+, (7)

where

Y = [f(x1), f(x2), . . . , f(xN )]T ,

X =

⎡
⎢⎢⎣
χz1(x1) χz2(x1) ... χz2n (x1)
χz1(x2) χz2(x2) ... χz2n (x2)

... ... ... ...
χz1(xN ) χz2(xN ) ... χz2n (xN )

⎤
⎥⎥⎦

θ = [θ1, θ2, . . . , θ2
n

]T ,

(8)

and λ is a user-defined parameter.

The accuracy of the performance prediction depends mostly

on the choice of λ, which is not known as a priori. A too small

value of λ will make the effect of the L1 norm regularization

to be minimal, hence not effective. For example, when λ is

equal to 0, the solution of the problem (7) is simply the least

squares solutions. Vice versa, a too large value of λ will shrink

the estimated parameters θ to be 0. To automatically find a

suitable λ that gives a high prediction accuracy, we use the

cross validation technique, i.e.,

1) Split the training dataset into two parts: estimation and

validation (67%-33%).

2) Use estimation dataset to estimate θ̂λ using Eq. (7) with

different values of λ.

3) For each estimate θ̂λ obtained in Step 2, compute the sum

of squared error between the measured output and the

predicted model output on the validation dataset. Finally,

choose the value of λ that minimizes the errors on the

validation dataset.

The range to search for λ in Step 2 is also important, as

we do not want to spend a lot of time to search for λ from 0
to +∞. Here, based on our empirical experiment, we suggest

to search for λ within the range from 0 to 0.1‖XTY ‖∞ (in

the literature, the value λmax = ‖XTY ‖∞ is called “critical

value”, which makes the solution of the Lasso problem to be

0). In addition, to solve (7) faster with the desired level of

accuracy, we scale X and Y to a factor of 2n/max(Y ).

B. A Dimension Reduction Lasso Fourier Learning Algorithm

1) Reducing the number of coefficients: Solving (7) can

give a good Fourier coefficient estimate of software perfor-

mance, however, the number of coefficients in the model is

normally very large (2n coefficients). In practice, a small

model is more helpful for users to understand the influence

of individual configuration options and their interactions on

software performance. As mentioned in Section I and Sec-

tion III-A, for software performance function, many Fourier
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coefficients are zeros or very close to zeros. Hence, we can

remove these coefficients since they do not contribute to the

prediction accuracy of the model. Fig. 1 shows an example

of how the prediction errors look like when we remove 0 to

1024 coefficients out of the model. It can be seen that in this

case, we can remove around 1000 coefficients as they do not

help to reduce the prediction error.

Fig. 1. Elbow graph to remove non-contributing Fourier coefficients (LLVM).

To remove all the non-contributing Fourier coefficients (i.e.

the coefficients that do not improve the prediction accuracy

when they are included in the model), we use the elbow

method [24] to select the right number of Fourier coefficients

to be reduced. We first solve the optimization problem in (7)

to find 2n estimated Fourier coefficients. We then remove any

coefficients whose presence in the model does not give much

better modelling of the data. To be more specific, a coefficient

is removed if the difference in accuracy between the model

without such a coefficient and the model with all coefficients

is less than 1%. Having selected the list of contributing Fourier

coefficients, we re-construct the linear regression model, and

apply Lasso one more time to find the final estimate.

2) Dimension Reduction for Large Configurable Systems:
For small or medium configurable systems (i.e. systems with

less than 15 configuration options), any optimization solver

is capable of solving (7) within a reasonable amount of time.

However, when the number of configuration options is large

(i.e. when the number of configuration options n is more than

15), the number of parameters need to be estimated increases

exponentially. Solving (7) directly will then require enormous

amount of computation time or memory. Hence, it is necessary

to design an algorithm that can solve (7) when the number

of configuration options n is large. Our core idea is to split

the 2n configurations into 2n−p groups, each group has 2p

configurations, p ≤ n. We then construct a linear regression

problem in each group and solve it with Lasso to find out

which configurations in each group contribute the most to

the performance value. Specifically, for group i, we solve the

following optimization problem:

min
θ

1

2
‖Y −Xiθi‖22 + λi‖θi‖1, λ ∈ R+, (9)

where

Y = [f(x1), f(x2), . . . , f(xN )]T ,

Xi =

⎡
⎢⎢⎣
χzi,1(x1) χzi,2(x1) ... χzi,2p (x1)
χzi,1(x2) χzi,2(x2) ... χzi,2p (x2)

... ... ... ...
χzi,1(xN ) χzi,2(xN ) ... χzi,2p (xN )

⎤
⎥⎥⎦ ,

θi = [θ1, θ2, . . . , θ2
p

]T ,

(10)

and zi,h (h = 1, ..., 2p) is the hth configuration in group

i. Note that the output vector of the optimization problem

in (9) is the same for all groups and equal to the output

vector of the linear regression problem in (6). This is to

ensure that the configurations we pick in each group is truly

due to their Fourier coefficients contributing the most to the

performance value. Then by solving (9) for 2n−p groups,

and use the elbow method described in Section III.B.1, we

can find the contributing Fourier coefficients in each group.

Combining these 2n−p lists gives the list of all contributing

Fourier coefficients. Finally, using this list, we can reconstruct

the linear regression and apply Lasso to produce the final

estimate. With this splitting strategy, at one time, we only

need to estimate 2p (p ≤ n) number of Fourier coefficients.

To ensure that our algorithm can run on an ordinary desktop

computer, we suggest p to be between 0 and a maximum

value MAX P (MAX P ≤ n). In our experiments, based on

our computer memory capacity, we set MAX P to 14 and set

p to be equal to MAX P.

In addition, when the number of configuration options n
increases, the number of the Lasso regressions (9) needs to

be solved also increases. For example, with a software system

having 39 configuration options, and p is chosen as 14, then

we need to solve 239−14 Lasso regressions. In this case, the

computation time becomes very expensive. As mentioned in

Section I and Section III.A, for software performance function,

many Fourier coefficients are zeros, thus there are many

groups whose Fourier coefficients are also zeros. For these

groups, we do not need to solve the Lasso regressions (9) to

find the estimated Fourier coefficients. Therefore, to reduce

the computation time of the algorithm, we suggest to solve

(9) for only a few groups that contain the most contributing

configurations.

These most contributing configurations can be found by

analyzing the property of the Fourier transformation of the

performance function. Specifically, using Fourier learning, the

performance function of a software system becomes [28],

f(x) =
∑

z∈{0,1}n
f̂(z)χz(x),

=
∑
z∈C0

f̂(z)χz(x) +
∑
z∈C1

f̂(z)χz(x) + . . .
(11)

where χz(x) is computed using (3), Ci is the group of

configurations whose i options are set to 1 and (n−i) options

are set to 0. Since χz(x) = −2 × mod(
∑n

j=1 zjxj , 2) + 1,

with mod(y, 2) = y mod 2 and zj , xj being the jth options
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of the configurations z and x respectively. Hence (11) can be

rewritten as,

f(x) =
∑
z∈C0

f̂(z)(−2×mod(

n∑
j=1

zjxj , 2) + 1)

+
∑
z∈C1

f̂(z)(−2×mod(

n∑
j=1

zjxj , 2) + 1) + . . .

=
∑

z∈{0,1}n
f̂(z)− 2

n∑
i=1

f̂(z[i])mod(xi, 2)

− 2

i,j=n∑
i,j=1

f̂(z[i,j])mod(xi + xj , 2)− . . . ,

(12)

where z[i] is the configuration with the ith option being 1 (all

other options are 0); z[i,j] is the configuration with the ith

and jth options being 1 (other options are 0). From (12), we

can see that f̂(z[i]) represents the influence of the option ith

on the performance while f̂(z[i,j]) represents the interactions

between the options ith and jth. Based on our empirical

experiment on some subject systems, f̂(z[i])ni=1 usually have

the largest absolutes values, followed by f̂(z[i,j])ni,j=1 and

other subsequent f̂(z). This means the most contributing

configurations belong to the first few Ci groups (where

Cis are defined in (11)). Using this observation, we only

need to solve the Lasso regression (9) for the configurations

belonging to the first few Ci groups, with i ranging from

0 to MAX GROUP (MAX GROUP ≤ n). Note that the

larger the value of MAX GROUP, the higher the prediction

accuracy of the model. In our experiments, to achieve a

reasonable computation time with good prediction accuracy,

we empirically set MAX GROUP to 6 when n ranges from

15 to 20 and MAX GROUP to 4 when n > 20. When n < 15,

we deem the system a small or medium configurable system

so no dimension reduction is performed. The full description

of our algorithm is presented in Algorithm 1.

C. Identifying performance-influencing configuration options
and their interactions

To identify the influencing configuration options and their

interactions, Equation (12) can be utilized. Specifically, it can

be proved1 that, when {xmi
}ni=1 ∈ {0, 1}, we have:

mod(xm1
+ xm2

+ · · ·+ xmn
, 2)

=

i=mn∑
i=m1

xi − 21
i,j=mn∑
i,j=m1
i�=j

xixj + 22
i,j,k=mn∑
i,j,k=m1
i �=j �=k

xixjxk

+ · · ·+ (−1)mn−22mn−2

i1,...,imn−1=mn∑
i1,...,imn−1=m1

i1 �=···�=imn−1

xi1 . . . ximn−1

+ (−1)mn−12mn−1xm1
xm2

. . . xmn
.

(13)

1The proof is available at https://bit.ly/2IpBZ34

ALGORITHM 1: DIMENSION REDUCTION LASSO

FOURIER LEARNING ALGORITHM (PERLASSO)

1) From the space of all configurations, select

the configurations that belong to the groups

{Cm}MAX GROUP
m=0 . Split all these configurations into

different groups, where each group has 2p configu-

rations, using the methodology described in Section

III.B.2. The default setting for p is min(n,MAX P).
Denote the number of groups (that has 2p configu-

rations in each group) by NUM GROUP.

2) for i=1:NUM GROUP
a) Solve the following Lasso linear regression

problem to find the Fourier coefficients es-

timates θi of group i (the cross validation

method described in Section III.A is used to

find the regularization parameter λi),

min
θ

1

2
‖Y −Xiθi‖22 + λi‖θi‖1, λ ∈ R+,

where Y,Xi, θi satisfy (9).

b) Sort the estimated Fourier coefficients θi by

its absolute values. Use the elbow method

described in Section III-B to find the configu-

rations with contributing Fourier coefficients.

3) Generate a new regression matrix Xr, where⎡
⎢⎢⎣
χz′1(x

1) χz′2(x
1) ... χz′m(x1)

χz′1(x
2) χz′2(x

2) ... χz′m(x2)
... ... ... ...

χz′1(x
N ) χz′2(x

N ) ... χz′m(xN )

⎤
⎥⎥⎦ ,

where z′i is a configuration found in Step 2.

4) Solve the following optimization problem using the

steps listed in Step 2,

min
θ

1

2
‖Y −Xrθr‖22 + λ‖θr‖1, λ ∈ R+.

5) Remove all the coefficients whose absolute values

are smaller than 1% of the maximum coefficient.

Combining Equations (12) and (13), we have a simple regres-

sion formula of the learned model as follows,

f(x) =a0 +

i=n∑
i=1

aixi +

i,j=n∑
i,j=1
i�=j

ai,jxixj + · · ·+ a1,...,n

i=n∏
i=1

xi,

where,

a0 =
∑

z∈{0,1}n
f̂(z),

ai = −2
(
f̂(z[i]) +

n∑
j=1
j �=i

f̂(z[i,j]) + ...+
n∑

jk=1
jk �=i

f̂(z[i,j1,...,jn−1])
)
,

. . . . . . . . .

a1,...,n = −2f̂(z[1,2,...,n]),
x = [x1, x2, . . . , xn],
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with z[i] being the configuration with the ith option being 1

(all other options are 0), z[i,j] being the configuration with the

ith and jth options being 1 (other options are 0), etc. Using

this model, we can see that the influence of a configuration

option xi on the performance function can be represented by

the coefficients ai, e.g. the larger the absolute value of ai, the

more xi influences the performance. The interaction between

configuration options xi and xj can be represented by the

coefficients ai,j , e.g. the larger the absolute value of ai,j , the

more the interaction influences the performance.

D. Predicting performance for a new configuration

After getting the estimated Fourier coefficients θ̂r using

Algorithm PerLasso, the predicted performance value of a new

configuration xnew can be computed by,

f(xnew) = [χz′1(x
new), χz′2(x

new) . . . χ
z′2n−pmrank

(xnew)]θ̂r.

E. Tool Implementation

We implement our algorithms using Matlab R2017a. We

use the ADMM Lasso code provided in [2] to solve the local

Lasso problems. For the Dimension Reduction Lasso Fourier

Learning algorithm (PerLasso) described in this section, we

implement it by ourselves. The source code is publicly avail-

able at: https://bit.ly/2IpBZ34.

IV. EVALUATION

A. Experimental Design

In this section, we aim to answer the following research

questions:

RQ1: How accurate is the proposed approach in identifying

performance-influencing configuration options?

RQ2: How accurate is the proposed approach in predicting

system performance?

The detailed setup for each experiment will be described

in the subsequent sections. In general, we use the training

dataset (sample) to generate a performance-influence model

for each method, and then use this model to understand

the influence/interaction of configuration options and predict

performance values of configurations in the testing dataset.

B. RQ1: How accurate is the proposed approach in identify-
ing performance-influencing configuration options?

In this section, we aim to evaluate if the performance-

influence model obtained by PerLasso is accurate, i.e. if the

learned model is similar to the ground truth.

1) Setup: We use 4 synthetic datasets to evaluate the ability

of our model in identifying performance-influencing configu-

ration options. Here we use a similar experiment setup in [20].

We use the ground-truth performance models described in [20]

and provided by the SPLConqueror project2. The ground-truth

performance models are realistic formulas and can represent

performance variations in real software systems. To generate

a synthetic dataset, we apply the ground-truth model on the

2http://www.fosd.de/SPLConqueror/

whole configuration space and generate the measurements of

all the configurations. The descriptions of these 4 synthetic

datasets are shown in Table II. For each synthetic dataset, we

randomly select a certain number of configurations and their

corresponding performance values to construct the training

dataset. We use different sizes for the training datasets of

each synthetic dataset: 60, 80, 100, 120. Besides, to evaluate

the consistency and stability of our approach, we repeat

the random sampling, training and building the performance-

influence models process 30 times.
In the learned regression model, each term (except the

constant term) indicates a configuration option or an in-

teraction among the configuration options. To evaluate the

accuracy of a learned model compared to the ground-truth,

we compute: the number of terms both the learned model and

the ground truth have (i.e. correct terms), the number of terms

the learned model does not have but the ground truth has (i.e.

missing terms), and the number of terms the learned model

has but the ground truth does not have (i.e. extra terms). We

then adopt the widely-used Precision and Recall metrics to

compute the degree of similarity between the learned model

obtained by PerLasso and the ground truth model. Specifically,

we define these two metrics as:

Precision =
correct terms

correct terms + extra terms
,

Recall =
correct terms

correct terms + missing terms
.

With this definition, the Precision metric represents the per-

centage of correct terms in the learned model while the Recall
metric shows the percentage of correct terms the model can

recall from the ground truth.

TABLE II
THE SYNTHETIC GROUND-TRUTH PERFORMANCE-INFLUENCE MODELS

Model Domain Language |D| n
Apache-S Web Server C 512 9
LLVM-S Compiler C++ 2048 11
BDBC-S Database C 512 9
BDBJ-S Database Java 106 18

n is the number of configuration options.
|D| is the number of configurations.

2) Results: In Table III, we show the accuracy of the

learned models obtained by PerLasso for the 4 synthetic

datasets with different sample sizes. It can be seen that for all

the synthetic datasets, there is strong similarity between the

learned models and the ground truth models. For most of the

synthetic datasets (Apache-S, BDBJ-S, LLVM-S), PerLasso
accurately identifies all the influencing options and their inter-

action. Its precision is also very high, nearly 1 for all sample

sizes, which means it does not wrongly identify any extra

configuration options or interactions. For the synthetic BDBC-

S dataset, larger sample is required to build an accurate model.

When the sample size ranges from 100 to 160, PerLasso can

correctly identify more than 60% of the terms in the ground

truth model.
To demonstrate how the performance-influence model ob-

tained by PerLasso looks like, we show a concrete model

475



TABLE III
COMPARISON BETWEEN PERLASSO MODELS AND THE ACTUAL MODELS

Subject
System

Sample
Size

Precision Recall MRE

Apache-S 60 0.90 0.84 16.44

80 1 0.92 9.50

100 1 0.97 3.71

120 1 1 0.52

BDBJ-S 60 0.64 0.93 27.66

80 0.94 1 3.71

100 0.98 1 1.18

120 1 1 0.64

LLVM-S 60 0.89 0.96 3.11

80 1 1 0.00

100 1 1 0.00

120 1 1 0.00

BDBC-S 100 0.65 0.48 43.86

120 0.63 0.51 40.79

140 0.63 0.54 36.75

160 0.63 0.58 30.69

Precision: the average precision of 30 experiments. Recall: the average
recall of 30 experiments. MRE: the average MRE of 30 experiments.

obtained by PerLasso using a random sample of 100 perfor-

mance values from the synthetic BDBJ-S dataset:

f̂(x) = − 353.44 + 98234.75× x1 + 237128.64× x3

− 46091.74× x2 − 188926.97× x2 × x3.

The model says that for the system BDBJ-S, features

x1(root), x3(Finest), x2(S100MiB) have major influence

on system performance. The selection of the configuration

options root and Finest could reduce the system perfor-

mance, while the selection of S100MiB could increase the

performance. The interaction between Finest and S100MiB
(denoted as x2 × x3) also influences the performance.

Note that the ground truth model for the synthetic BDBJ-S

dataset is:

f(x) = 98599.59× x1 + 237630.81× x3

− 46072.03× x2 − 189466.12× x2 × x3.

It can be seen that the performance-influence model ob-

tained by PerLasso is very similar to the ground truth. It can

identify accurately all the performance-influencing configura-

tion options (root, Finest and S100MiB) and their interactions

(between S100MiB and Finest). The ability to understand

the influencing configuration options and their interaction

can help maintenance, debugging, and optimization of highly

configurable software systems.

C. RQ2: How accurate is the proposed approach in predicting
system performance?

In this section, we compare PerLasso with the state-of-the-

art performance-influence models, namely SPLConqueror [20,

21] and FourierLearning [28], which are described in Section

I.

1) Setup: Here we compare the prediction accuracy of the

three performance-influence models on six real-world subjects

systems. They are the same as the subject systems used in [21]

and five of them are used in [28]. These systems have different

characteristics and are from different application domains, e.g.

web server, database library, compiler, etc. They are also of

different sizes (45 thousands to more than 300 thousand lines

of code) and written in different languages (Java, C, and C++).

The number of configuration options ranges from 8 to 39

while the number of valid configurations range from 180 to

nearly 4 millions. The overview of these six subject systems

are described in Table IV. For each subject system, from all

the measurements, we randomly select a certain number of

configurations and their corresponding performance values to

construct the training set. All the remaining measurements

are used as the testing set. For each subject system, with each

sampling size, we repeat this prediction and evaluation process

30 times. To evaluate the prediction accuracy, we use the mean

relative error (MRE), which is computed as,

MRE =
1

|C|
∑
c∈V

|predictedc − actualc|
actualc

× 100, (14)

where V is the testing dataset, predictedc is the predicted

performance value of configuration c, actualc is the actual

performance value of configuration c. We choose this metric

as it is widely used to measure the accuracy of prediction

models [4, 12, 20].

TABLE IV
THE REAL-WORLD SOFTWARE SYSTEMS

System Domain Language LOC |D| n
Apache Web Server C 230,277 192 9
x264 Encoder C 45,743 1152 16
LLVM Compiler C++ 47,549 1024 11
BDBC Database C 219,811 2560 18
BDBJ Database Java 42,596 180 26
SQLite Database C 312,625 3,932,160 39

LOC is the number of lines of codes
|D| is the number of valid configurations

n is the number of configuration options (features).

2) Results: Fig. 2 shows the prediction accuracy of Per-
Lasso and SPLConqueror with different sample sizes. As

described in [21], SPLConqueror is suggested to be used with

five different sampling heuristics: Feature-Wise (FW), Pair-

Wise (PW), Higher-Order (HO), Hot-spot (HS) and Brute-

Force (BF). Among these five heuristics, the PW, HO and

HS heuristics achieve the best prediction accuracy using the

smallest sample. Hence, we only plot the MREs of SPLCon-
queror models when the training dataset is constructed using

these three heuristics. We use directly the results published in

their paper [21]. From Fig. 2, we can see that for the subject

systems x264, LLVM, BDBJ and SQLite, PerLasso outper-

forms SPLConqueror for all sample sizes. For the system

Apache, there are sample sizes that SPLConqueror are better

than PerLasso and there is sample size that SPLConqueror and
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Fig. 2. MRE versus sample size.

PerLasso perform similarly. For the subject system BDBC,

SPLConqeror is slightly better than PerLasso.

Besides, we utilize the sample size suggested in [18] and

perform performance prediction using PerLasso and Fourier-
Learning. These sample sizes were chosen using the projec-

tive sampling strategy suggested in [18] and the acceptable

prediction accuracy is set to 95%. Here we do not include

the performance of SPLConqueror as their sample sizes are

very different (ranging from 29 to 566) thus are difficult to be

compared with. This is because SPLConqueror uses heuristics

to obtain samples while FourierLearning and PerLasso use

random sampling. All the statistics related to the prediction

accuracy of the two learning methods are shown in Table

V. From this table, it can be seen that FourierLearning does

not perform well compared to PerLasso. As acknowledged in

[28], for the studied subject systems, the number of samples

required by FourierLearning is more than the entire valid

domain of the systems for any reasonable accuracy level. It has

been observed that although FourierLearning can guarantee

a theoretical boundary of the prediction accuracy, but this

approach still needs thousands to hundreds of thousands of

executions of sample configurations [16].

In summary, our experiments show that PerLasso can

achieve higher or comparable prediction accuracy, when com-

pared to existing performance-influence models.

In our experiments, we use a Windows 10 computer with

Intel Core i7-7600U CPU 2.80GHz with 16GB RAM and

Matlab R2017a. For all the subject systems described in Table

IV and for all the sample sizes investigated in RQ2, PerLasso
takes a few seconds to 1 minute to build a performance model.

The computation time of SPLConqueror is similar to that of

PerLasso. The computation time of FourierLearning is similar

to that of PerLasso for small software systems (systems with

a small number of configuration options) and two or three

times higher than that of PerLasso for large software systems.

TABLE V
COMPARISON BETWEEN PERLASSO AND FOURIERLEARNING USING THE

SAMPLE SIZE SUGGESTED IN [18]

System Approach Mean(MRE) STDev(MRE) N

Apache
PerLasso 8.2 1.7 55

FourierLearning 100 0.1 55

x264
PerLasso 2.76 1.16 93

FourierLearning 100 0.1 93

LLVM
PerLasso 4 0.86 62

FourierLearning 100 0.1 62

BDBJ
PerLasso 6.2 4.55 48

FourierLearning 100 0.1 48

BDBC
PerLasso 4.88 5.09 191

FourierLearning 100 0.1 191

SQLite
PerLasso 4.2 0.4 925

FourierLearning 100 0.1 925

Mean MRE is the mean of the prediction relative errors seen in 30 repeats.
STDev is the standard deviation of the MREs from these 30 repeats. N is

the number of samples for training data.

Note that both PerLasso and FourierLearning need to estimate

2n parameters, however, PerLasso requires less time than

FourierLearning because of the dimension reduction strategy

proposed in Section III.B.

V. DISCUSSION

A. Why does the proposed algorithm work?

As discussed in Section III.A, by writing the Fourier

coefficients estimation problem as a linear regression problem

(6), the task of predicting performance value becomes the task

of finding the true Fourier coefficients parameter θ0 of the per-

formance function. The more accurate the Fourier coefficients

are estimated, the better the performance prediction is.

To increase the prediction accuracy when the sample size

is small, we can incorporate our prior knowledge into the

prediction problem. That is, among those potential candidates,

we only pick the candidates that satisfy our belief about the
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Fig. 3. Estimated (True) Fourier coefficients (FC) of the system LLVM. FLearning stands for Fourier Learning. The X-axis represents the number of FCs
and the Y-axis represents the value of the FCs.

true parameter θ0. By doing this, we can reduce the number of

potential candidates θ̂ and hence, there is higher chance that

we can find the true parameter or we can approximate it close

enough. In other words, if we use our domain knowledge and

apply it to the learning process, even when the sample size

is small, we can still produce a set of possible candidates

that is similar to the set of possible candidates when we have

much larger sample size but no knowledge about the true

parameter. In our proposed algorithm, by applying LASSO

into (6), we pick parameters that a) fit the best to the regression

model (6) and b) must be sparse as it is our belief that only

a small number of configurations significantly affect system

performance. Each value of regularized parameter λ in (7) will

result in a possible candidate. By choosing the right value of

λ, we can find the right Fourier coefficient parameter θ0 of

the performance value.
Due to the space limit, we only present the estimated

Fourier coefficients of the LLVM system here. Among the six

benchmark systems, we choose LLVM because it is the only

system that has the performance value of the whole configura-

tions. Hence, we can compute the true Fourier coefficients of

LLVM using (4). Fig. (3) shows the true Fourier coefficients

of LLVM, its estimates computed using the formula in (5),

and its estimates using our proposed algorithm. We can see

that the true Fourier coefficients of the system LLVM is very

sparse, however, if we use the formula in (5) to approximate

the coefficients, the estimates are very noisy. When using

PerLasso, even with the sample size of 40, the estimated

Fourier coefficients replicates the true Fourier coefficients

quite well. When we have more training data, the cross

validation process and the training process are more accurate,

hence, the Fourier coefficients estimates are closer to the true

Fourier coefficients.

B. Strengths and limitations of PerLasso
A strength of PerLasso is that from the training sample,

it can build a performance-influence model, i.e. model that

explicitly represents the influence of configuration options and

their interaction, with higher prediction accuracy compared

to other approaches. The second strength of PerLasso is

that it uses random sampling so it is more flexible when

construct the training dataset compared to SPLConqueror.

FourierLearning also uses random sampling, however, the

prediction accuracy of the model obtained by FourierLearning
is very low compared to PerLasso. Lastly, PerLasso is a

progressive algorithm, hence, users can always achieve a much

higher model accuracy when having more training data.

A limitation of PerLasso is that currently it only works with

binary configurable software systems, i.e. software systems

with binary configuration options. Similarly, FourierLearning
can only work with binary configurable software systems.

SPLConqueror can work with binary-numeric software sys-

tems, i.e. software systems with both binary and numeric con-

figuration options. In the future, we will improve our approach

so that it can work with binary-numeric configurable systems.

Another limitation of PerLasso is that it does not provide

theoretical boundary of the prediction accuracy given a sample

size. FourierLearning can provide this theoretical boundary

while SPLConqueror does not guarantee any theoretical bound

on the model prediction accuracy either.

C. Threats to Validity

To evaluate the accuracy of the performance-influence mod-

els obtained by the proposed method, we used four synthetic

datasets whose performance models are known. These ground-

truth models are obtained in prior work with linear program-

ming [21, 22], which is a completely different technique

compared to our proposed method.

Furthermore, to increase the internal validity our experiment

results, for each subject system, we evaluate the performance

of our proposed approach and other state-of-the-art approaches

with various different sample sizes. For each sample size,

we randomly repeat the sampling, model construction and

evaluation process 30 times. For each process, the model is

evaluated on a test dataset which does not include any part

of the training dataset. To compute the similarity between our

models and the ground truth models, we use the Precision and

Recall metrics. These metrics have been utilized intensively in

the machine learning area. To evaluate the prediction accuracy,

we use the mean relative error (MRE) as it is a widely-

used metric in the literature for evaluating the effectiveness

of performance prediction algorithm and it is also used to

evaluate other approaches we compared. We are aware that

the relative error sometimes receives criticism, however, as the

focus of our paper is to suggest an algorithm that produces

performance-influence model with high prediction accuracy,

so it makes more sense to use the relative error instead of

other metrics.

For external validity, we evaluate the algorithms using

six public real-world datasets with different characteristics,
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domains, languages etc. These subject systems have a large

range of configuration options and have been used extensively

in the literature to evaluate the effectiveness of performance

prediction algorithms.

VI. RELATED WORK

In recent years, a large body of work has been conducted

to model the performance function of large-scale configurable

software systems. The core idea is to measure performance

of a limited set of configurations, build a performance model,

and use the model to predict the performance of the system

under any new configurations or to understand the influence

of the configuration options and their interactions.

There are various performance prediction models proposed

in the literature. CART [5] is a regression-tree based technique

that partitions features into subsets, and the performance

value of each subset is computed as the average performance

values of sampled configurations within the subset. Recently,

CART was further improved by utilizing various resampling

and automatic hyperparameter tuning techniques, and became

a learning method with higher prediction accuracy, namely

DECART [7]. CART/DECART have been utilized in many

frameworks for software performance prediction [16, 18].

Recently, Ha and Zhang proposed DeepPerf [8], which models

highly configurable software system using a deep feedforward

neural network combined with the L1 regularization. They

also designed a practical search strategy for automatically

tuning the network hyperparameters. However, a limitation

of these approaches is that their learned models are not

performance-influence models. To be more specific, we can-

not explain the influence of configuration options and their

interactions from the CART/DECART/DeepPerf models.

Some performance-influence models have been proposed to

describe the individual influences of configuration options and

their interactions on system performance. SPL Conqueror [21]

is a measurement-based prediction approach. The idea is to

produce a set of configurations that differ in a single feature,

compute the delta difference in the performance, and use

these deltas to generate approximations of features and feature

interactions. Later, in their improved version [20], Siegmund

et al. used stepwise linear regression to learn the function of a

performance-influence model from a sample set of measured

configurations. To reduce the dimensionality problem, they

used forward and backward feature selection to incrementally

learn the model. Fourier Learning is an approach that was first

suggested in [28]. The key contribution of this technique is

that it works with random sampling and provides a theoretical

boundary of the prediction accuracy but it requires a very large

training data in order to predict with a reasonable accuracy.

As shown in Section IV, our proposed approach can yield

a performance-influence model with much higher prediction

accuracy compared to these approaches.

There are also some work on selecting an optimal set of

configurations (or features) for configurable software systems.

For example, Zhang et al. [26, 27] proposed a Bayesian

Belief Network (BBN) based approach, which allows users

to configure features to best satisfy quality requirements

through qualitative analysis. Guo et al. [6] proposed a genetic

algorithm based technique for optimizing feature selection in

the face of resource constraints. Sayyad et al. [19] utilized

evolutionary algorithms to select optimal features regarding

multiple objectives. Nair et al. [16] proposed to select a small

number of configurations based on a distance matrix between

the configurations. In [15], a rank-based approach is proposed

to reduce the measurement cost as well as the time required

to build performance models. Oh et al. [17] randomly sample

and recursively search a configuration space directly to find

near-optimal configurations without constructing a prediction

model. Jamshidi et al. [10, 11] proposed a transfer learning

based approach to performance prediction: instead of taking

the measurements from the target system, they learn the model

using samples from other sources. Han et al. [9] manually

analyzed bug reports and found that exposing performance

bugs often requires combinations of multiple input parame-

ters and certain input parameters are frequently involved in

exposing the bugs. There are also much work on checking

inter-dependencies among configurations [1, 23]. Our work

and these related methods can be combined to further improve

the effectiveness of performance modeling and prediction.

VII. CONCLUSION

In this paper, we have proposed PerLasso, which can model

the influence of configuration options and their interactions

on the performance of highly configurable software systems,

using a small sample of measured performance data. Per-
Lasso is based on Fourier Learning and Lasso regression,

and incorporates a novel dimensional reduction algorithm.

The models constructed with PerLasso can help understand

the performance-influencing configuration options and can

be used to accurately predict the system performance with

a new configuration. Our experimental results confirm the

effectiveness of the proposed approach. Compared with ex-

isting performance-influence models, our model has higher or

comparable prediction accuracy.

Our tool and experimental data are publicly available at:

https://bit.ly/2IpBZ34.
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and Y. Agarwal. Transfer learning for performance mod-

eling of configurable systems: An exploratory analysis.

In Proceedings of the 32Nd IEEE/ACM International
Conference on Automated Software Engineering (ASE),
pages 497–508, 2017.

[12] M. Jorgensen and M. Shepperd. A systematic re-

view of software development cost estimation studies.

IEEE Transactions on Software Engineering, 33(1):33–

53, 2007.

[13] D.R. Kuhn, R.N. Kacker, and Y. Lei. Introduction to
combinatorial testing. CRC Press, 2013.

[14] Y. Mansour. Learning boolean functions via the fourier

transform. In A. Orlitsky V. Roychowdhury, K.Y. Siu,

editor, Theoretical Advances in Neural Computation and
Learning, pages 391–424. Springer, 1994.

[15] V. Nair, T. Menzies, N. Siegmund, and S. Apel. Using

bad learners to find good configurations. In Proceed-
ings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, pages 257–267.

[16] V. Nair, T. Menzies, N. Siegmund, and S. Apel. Faster

discovery of faster system configurations with spectral

learning. Automated Software Engineering, Aug 2017.

[17] J. Oh, D. Batory, M. Myers, and N. Siegmund. Finding

near-optimal configurations in product lines by random

sampling. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE

2017, pages 61–71, New York, NY, USA, 2017. ACM.

[18] A. Sarkar, J. Guo, N. Siegmund, S. Apel, and K. Czar-

necki. Cost-efficient sampling for performance predic-

tion of configurable systems (t). In 2015 30th IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE), pages 342–352, Nov 2015.

[19] A. S. Sayyad, T. Menzies, and H. Ammar. On the value

of user preferences in search-based software engineer-

ing: A case study in software product lines. In 2013
35th International Conference on Software Engineering
(ICSE), pages 492–501, May 2013.

[20] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner.
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