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Abstract
Crowdsourcing Software Development (CSD) has emerged as a new software development
paradigm. Topcoder is now the largest competition-based CSD platform. Many organiza-
tions use Topcoder to outsource their software tasks to crowd developers in the form of open
challenges. To facilitate timely completion of the crowdsourced tasks, it is important to find
right developers who are more likely to win a challenge. Recently, many developer recom-
mendation methods for CSD platforms have been proposed. However, these methods often
make unrealistic assumptions about developer status or application scenarios. For example,
they consider only skillful developers or only developers registered with the challenges. In
this paper, we propose a meta-learning based policy model, which firstly filters out those
developers who are unlikely to participate in or submit to a given challenge and then recom-
mend the top k developers with the highest possibility of winning the challenge. We have
collected Topcoder data between 2009 and 2018 to evaluate the proposed approach. The re-
sults show that our approach can successfully identify developers for posted challenges re-
gardless of the current registration status of the developers. In particular, our approach works
well in recommending new winners. The accuracy for top-5 recommendation ranges from
30.1% to 91.1%, which significantly outperforms the results achieved by the related work.
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1 Introduction

Crowdsourcing Software Development (CSD), which outsources software tasks to the
crowd developers, is an emerging software development paradigm (Begel et al. 2012; Dubey
et al. 2017; Saremi and Yang 2015; Saremi et al. 2017). Many organizations like Amazon,
Google, NASA, and Microsoft have utilized the services of the CSD platforms to solicit
contributions from talented developers across the globe (Hasteer et al. 2016).

The general procedure of CSD usually involves three types of roles (Stol and Fitzgerald
2014), namely customers, workers, and platforms. Customers can post tasks in a platform.
Workers are the crowd developers who conduct the tasks outsourced by the customers and
submit their contributions via the platform. The platform acts as a marketplace for the work-
ers and customers, and maintains all the issues and artifacts created by them. To encourage
the community to participate in crowdsourcing software development, many CSD plat-
forms, such as Topcoder, take the form of open contests, where each task is treated as a
challenge. For a posted challenge, developers can register with it and submit their contri-
butions to it. The winner (usually 1 or 2 developers) will get paid while the inexperienced
developers will get credits.

There is a wide range of research on CSD (Mao et al. 2017; Stol and Fitzgerald 2014;
Hasteer et al. 2016; Zanatta et al. 2018; Dubey et al. 2017; Abhinav et al. 2017; Cui et al.
2017; Saremi and Yang 2015), but still a lot of problems in CSD remain unsolved. One
of the most important issues are the recommendation of reliable developers because most
crowd developers do not submit any work after registration, which can be harmful for time-
critical challenges. For example, according to our data collected from Topcoder, about 85%
of developers have ever registered with a challenge, but only around 23% of the registrants
have submitted their works. The high quitting rate is harmful to crowdsourcing software
development.

In order to improve the efficiency of CSD, many researchers proposed models to rec-
ommend reliable developers to a crowdsourced task so that the task can be finished on
time with quality. For example, some researchers treated the recommendation problem as
a multi-class classification problem (Mao et al. 2015; Fu et al. 2017). They utilized clus-
tering and classification algorithms to recommend developers for the Topcoder challenges.
Yang et al. (2016) proposed a recommender system that can help crowd developers make
decisions in participating in a challenge. However, there are three major problems in current
recommendation models:

– Unrealistic assumptions. The existing methods for developer recommendation in CSD
make several important assumptions about developer status or application scenarios.
For example, the methods proposed in Mao et al. (2015) and Fu et al. (2017) only con-
cern skillful developers (i.e. those who have won the challenges for 5 times at least).
However, our statistics show that developers who won over 5 challenges take up no
more than 10% of all winners and many winners only have 1 or 2 winning records. The
work proposed in Yang et al. (2016) predicts if a developer has a chance to win a chal-
lenge once the registration status of the developer is known (i.e. whether a developer
has registered with the challenge or not). However, for many developers such status is
not known beforehand. The existing methods make the above assumptions because they
formulate the developer recommendation problem as a multi-class classification prob-
lem, therefore they need to fix the number of classes (developers) to a relatively small
set, which is unrealistic in practice.
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– No support for new winners. The current methods predict winners through multi-class
classification, where labels are a fixed set of developers who have winning histories.
Therefore, the current methods are unable to predict a potential winner who has never
won before. This can be viewed as a form of the cold-start problem.

– Low accuracy. Because of the above two problems, the recommendation accuracy of
the existing methods is still not satisfactory (e.g., the top-5 recommendation accuracy
is lower than 40% on most of our datasets) if we consider all the challenges (without
filtering out developers with few winning records).

In our work, we build a policy model to address the problems mentioned above. We
model the developer recommendation process using the policy model, which consists of
a sequence of procedures for predicting registration, submission, and winning status of a
developer, respectively. Only the developers who are likely to register and submit to a chal-
lenge are used in winner prediction, thus relieving the necessity of assuming developer
status. There are many factors that we need to consider in the design of the policy model,
such as different machine learning algorithms and different threshold settings. To achieve
an optimal solution, we adopt the meta-learning paradigm (Brazdil et al. 2008; Metalearn-
ing 2009; Rice 1976) to automatically select proper machine learning algorithms and tune
threshold parameters. In our meta-learning approach, the space of meta-features (algorithms
and parameters) is searched and the optimal ones that can achieve the best overall predic-
tion performance are selected. The resulting policy model with the optimal meta-features is
used for developer recommendation.

We have experimented with the proposed approach using the real-world data collected
from Topcoder. We train our models on 11 Topcoder datasets and test the models using the
recently posted challenges. The results show that the proposed approach outperforms the
existing methods and can recommend developers who have only a few or even no winning
records. Furthermore, some types of challenges are newly proposed by CSD platforms and
contain only a small number of historical records. Our source code and experimental data
are available in GitHub.1

Our work can help crowdsourced projects find suitable developers and facilitate timely
completion of the project. Although our evaluation is performed on Topcoder data only, the
general principles of the proposed approach is applicable to other CSD platforms as well.
The major contributions of the paper are as follows:

– We propose a meta-learning based policy model for recommending developers in
CSD. Our model does not make assumptions about developer status and is therefore
more realistic in practice. Furthermore, our approach can support new developers and
challenge types.

– We have conducted extensive experiments on 11 major Topcoder datasets. The results
confirm the effectiveness of the proposed approach.

The rest of the paper is organized as follows: Section 2 describes the background and
the Topcoder dataset. Section 3 describes the proposed developer recommendation method
for CSD. Section 4 evaluates the effectiveness of our recommender system and analyzes
the results of the experiments. Section 5 discusses the model capacity in supporting new
winners and challenge types. We show the threats to validity in Section 6, introduce related
work in Section 7, and conclude the paper in Section 8.

1https://github.com/zhangzhenyu13/CSDMetalearningRS
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2 Background

2.1 Crowdsourcing Software Development

Crowdsourcing Software Development (CSD) has been increasingly adopted in recent
years. CSD outsources software tasks to crowd developers and has the advantages of low-
cost, short time-to-market, and open innovation (Hasteer et al. 2016). Many companies such
as Google and Microsoft have successfully used CSD platforms to develop software com-
ponents. CSD is also an active topic in recent software engineering research (Begel et al.
2012; Saremi et al. 2017; Khanfor et al. 2017; Abhinav et al. 2017; Zanatta et al. 2018).

There are many popular CSD platforms such as Topcoder,2 Freelancer,3 Upwork,4 and
Kaggle.5 They all adopt an Open Call form to attract developers to contribute to the posted
tasks. To facilitate developer participation, many CSD platforms take the form of open
contests, where each task is treated as a challenge and developers compete in the chal-
lenge. Take Topcoder as an example, the development process consists of challenge posting,
developer registration, work submission, and then work reviewing. Finally the winners are
selected and awarded.

2.2 Developer Recommendation for CSD

In competition-based CSD platforms, developers need to consider whether or not to register
and submit their work in order to win the competition. According to our study of Topcoder,
nearly 2/3 of posted challenges fail to complete due to zero submission. Among the com-
pleted challenges, only 23% of developers have ever submitted their work. Therefore, it is
beneficial to build a model to identify the potential winners for customers of the posted
challenges (i.e., challenge organizers) and then recommend these developers to the cus-
tomers. Developer recommendation is especially helpful for the challenges that receive few
submissions or even few registrations. The challenge organizers can proactively contact the
recommended developers regarding the crowdsourced work.

Recently, some developer recommendation methods for CSD have been proposed. Fu
et al. (2017) proposed a clustering based collaborative filtering classification model (CBC),
which formulates the winner prediction problem as a multi-label classification problem.
Their best experimental results are achieved when Naive Bayes classifier is used. They
also proposed a competition network, which further helps to improve the recommendation
accuracy slightly. Mao et al. (2015) proposed a recommender system called CrowdRex,
which extracts developers’ history data and challenge data as input for their model. Their
best results are achieved when using decision tree as the classifier. Both CBC and Crow-
dRex only take into consideration skillful developers who have at least 5 winning records.
However, most of the developers only win no more than 2 times. Therefore, excluding the
developers with fewer than 5 winning records is unrealistic in practice. Yang et al. (2016)
leveraged several influential factors to build a dynamic crowd worker decision support
model (DCW-DS), which can predict a developer’s role (registrant, submitter, or winner)
for a given challenge. They obtained the best results when the Random Forest classifier is

2https://www.topcoder.com/
3https://www.freelancer.ca/
4https://www.upwork.com/
5https://www.kaggle.com/competitions/
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used. However, the performance of their method is not satisfactory when no registration or
submission status is observed.

2.3 Topcoder Dataset

We use Topcoder as an exemplar CSD platform to describe our approach throughout the
paper. Topcoder is now the world’s largest service provider of competition-based CSD.
There are many types of tasks in Topcoder. For example, “Test Suites” focuses on testing
correctness of a posted challenge in this category, “Assembly” focuses on integrating com-
ponents of a software project, “Bug Hunt” aims at finding bugs, etc. In the rest of the paper,
the term type refers to the category of a task and the term challenge refers to a concrete task
instance of a type. We divide all challenges according to their types into different datasets.
Each dataset contains all challenges of that type of tasks and the corresponding developers
that participate in those challenges.

Figure 1 gives an example of a Topcoder challenge. The “Subtrack” field contains a
list of types. The list panel in the bottom contains the challenges that developers can
choose to participate (register and submit). Figure 1 also shows an example task (“Delta
Migration from Postgres to Informix”), which contains the task description, required tech-
niques, important dates, prizes, current registrants, submissions, etc. In this example, there
are 0 submission and 28 registrants. In fact, our statistics show that there are no more
than 100 registrants for over 90% of the posted challenges. For each challenge, many
developers fail to register or submit. And among the registrants, half of them quit the chal-
lenge. In our work, we facilitate timely completion of the tasks by recommending suitable
developers.

3 Meta-Learning Based Policy Model for Developer Recommendation

3.1 Overall Design

The nature of challenge-based CSD consists of three phases: registration, submission, and
winning. Taking these three phases into consideration, we construct a policy model for
developer recommendation. Such a policy model reflects the fact that developer recommen-
dation in competition-based CSD is a sequence of registration, submission, and winning:
developers cannot make any submission if they do not register with the challenge and they
cannot win if they make no submission.

Fig. 1 An example of a Topcoder challenge
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Our policy model contains three machine-learning based predictors including the regis-
tration, submission, and winning predictors. Each predictor can output a probability value
for a developer and rank all developers according to this value. The two thresholds top R

and top S that range from 0.0 (0%) to 1 (100%) are for determining the top R and top S

of developers who can succeed in registration and submission, respectively. The workflow
of the three predictors is shown in Fig. 2. The variable P(Win) indicates the probability
of a developer being a winner. For example, if the rank of a developer given by registra-
tion predictor is not within the top R of all developers of a posted challenge, the developer
is considered inactive in registration and the corresponding winning probability is set to
0. Otherwise, the model will predict the developer’s submission and winning status in the
follow-up steps.

Our overall objective is to find proper machine learning algorithms and threshold
parameters that can maximize the prediction performance of the policy model. The opti-
mal algorithms and parameters (top R and top S) are obtained through meta-learning
(Section 3.4). Improper threshold parameters could affect the accuracy of the model
adversely. For example, a very small value of top R may filter away too many develop-
ers, which is harmful to recommendation. While a large top R may include nearly all the
developers, which is also harmful to recommendation. The final winning probability value
given by winning predictor is used to rank the developers. The top k developers in the list
are recommended to the customers (the challenge organizers).

The overall structure of our approach is illustrated in Fig. 2. The recommender system
contains the following three components:

– Data extractor, which extracts features from the challenge and developer data and
constructs the input data for base predictors.

– Base predictors, which predict the probability of a developer registering with, submit-
ting to, and winning a challenge, respectively. Each predictor consists of three machine
learning algorithms including ExtraTrees, XGBoost, and Neural Network.

Fig. 2 Our meta-learning based recommender system
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– Policy model, which consists of three base predictors and uses the previously learned
meta features as the policy to filter out those developers that are impossible to win.
Finally, the policy model can recommend top-k developers for a posted challenge of a
customer.

We describe each component in detail in the rest of the section.

3.2 Data Extractor

3.2.1 Data Preparation

To obtain the developer and challenge data from Topcoder, we have developed a spider
program to crawl the online traces of developer activities from January 2009 to February
2018. We eventually obtained Topcoder data containing 46,000 developers and 29 types of
challenges, which is the largest Topcoder data used in studies on this topic as far as we know.
We treat each type of challenge as a dataset. We remove the datasets that contain fewer than
10 winners as they are unpopular. The remaining 11 datasets are worth studying, which are
shown in Table 1.

In Table 1, the Reg, Sub, and Win represent the number of developers with registration,
submission, or winning history respectively. We filtered away around 36,000 incomplete
challenges (i.e. the challenges that failed without winners or were canceled by the challenge
organizers). In total, we have got 18,856 completed challenges, involving 41,827 registrants,
9,558 submitters, and 5,014 winners.

There are always some types of challenges that are more popular than others. For exam-
ple, in Table 1, the three biggest datasets are Code, Assembly, and First2Finish, which
contain more challenges and more developers than the other datasets. To reduce the data
sparsity and improve recommendation accuracy, we cluster each large dataset into small
ones. More specifically, we apply the k-means algorithm to cluster the challenges based on
their contents. Then we apply our model to each cluster. According to our experiments, to
obtain satisfactory clustering effect, k was finally set to 4, 4 and 8 for the three datasets
(Code, Assembly and First2Finish) respectively.

In challenge-based CSD, only a small percentage of developers can eventually win
the challenge. According to our statistics, in over 90% of all challenges, the number of

Table 1 The Topcoder datasets
used in this study Dataset (challenge type) Challenges Reg Sub Win

Conceptualization 243 1031 158 67

Content creation 106 995 163 66

Assembly 3437 3331 689 322

Test suites 142 523 100 60

UI prototype 1240 2591 450 124

Bug hunt 1285 1538 272 142

Code 3601 18786 5493 2999

First2Finish 6522 9802 1551 976

Design 753 598 140 61

Architecture 788 983 137 60

Development 739 1649 405 137
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developers that actually registered with a specific challenge is no more than 100, while there
are nearly 4000 developers having a winning history in total. Therefore, the winning data
is highly imbalanced. To ease training, we balance the training set by oversampling. More
specially, we apply ADASYN (He et al. 2008), which is an improved version of the SMOTE
method (Chawla et al. 2002), to balance the data classes.

3.2.2 Developer Influence Graph (DIG)

Archak (2010) observed the phenomenon that the registration of competitive developers
might deter the participation of others, while some developers are always willing to par-
ticipate in a challenge with other developers. Although the empirical study conducted by
Archak (2010) showed that there exits interaction influence between developers in the chal-
lenges, they did not propose a method to measure this influence. In order to quantify the
developers’ interaction in a CSD platform, in this work, we propose to build a directed
graph DIG (Developer Influence Graph), which models the influence between two develop-
ers in a given challenge based on their previous histories. The graph is illustrated in Fig. 3,
where the edge annotated with Influence Ratio (IR, defined in Eq. 1) indicates the frac-
tion of common participant history with respect to a developer. According to Eq. 1, a larger
IRA,B means that developer A has less “deter” or competence influence on developer B.
The term historyA,B represents the number of challenges participated by both developers
A and B. The term historyB indicates the number of challenges that developer B has par-
ticipated in. Essentially, IR is defined on the basis of the confidence level of the association
rule mining, which measures the influence of two developers statistically. In practice, the
demographics attributes of developers may also affect their behaviour, which will be inves-
tigated in future work. We build three DIGs on registration, submission, or winning history,
respectively. For example, when building DIG on registration, we count the |challenges|
that developer A and B both registered as historyA,B and |challenges| that developer B

Fig. 3 Illustration of a DIG
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registered as historyB . And DIG on submission, we count for submitted challenges and it
is similar for DIG on winning.

IRA,B = historyA,B

historyB

. (1)

Having constructed DIGs, we then apply the PageRank algorithm (Wang et al. 2016)
to generate a normalized rank score for each node, which indicates the influence of the
corresponding developer.

3.2.3 Feature Extraction

In our work, we identify and encode the following features:

– Challenge Features: We collect challenge-related features and encode them. In order to
efficiently represent the challenges, we consider the textual descriptions of a challenge,
the required programming languages techniques, challenge posting date, the number of
days the challenge lasts, the total rewards of the challenge (prizes), and the difficulty
of a challenge. To obtain a deeper understanding of a challenge, we encode the require-
ments of a challenge using Paragraph Vector (Le and Mikolov 2014), a state-of-the-art
technique for natural language processing. We first select the titles and requirement
descriptions of historical challenges and train a Paragraph Vector model. Then for the
current challenge, we apply the Paragraph Vector model to transform the textual con-
tents into a vector representation. The Paragraph Vector model considers both semantics
and the order of words and can better represent the contents of a challenge. Following
the related work (Fu et al. 2017), we encode the techniques and programming lan-
guages required by a challenge using one-hot feature encoding (Goodfellow et al. 2016)
because they are discrete terms. Besides, we use the difficulty parameter D proposed
in Wang et al. (2017), which is a synthetic normalized parameter that indicates the dif-
ficulty of a challenge. Specifically, D is calculated by combining four factors including
the duration of a challenge, the amount of the prize, the number of registrants and the
reliability bonus, and all the four factors are positively correlated with the difficulty
parameter D. A summary of the challenge features is shown in Table 2. The number of
dimensions that is used to encode each feature is also given(e.g. title(20) means the title
feature dimension is 20). After concatenating all the features, we get a 130-dimension
challenge feature vector.

– Developer Features: In order to efficiently represent a developer, we consider three
types of features, which include developer intrinsic features (such as skills, member

Table 2 Challenge feature
encoding Features Description

Languages (18) one-hot encoding of the programming language

Techniques (48) one-hot encoding of the technique used

Title (20) a title vector encoded by Paragraph Vector

Requirements (40) a requirement vector encoded by Paragraph Vector

Posting date (1) the time when the challenge is posted

Duration (1) the number of days the challenge lasts

Prizes (1) the award offered by the customer

Difficulty (1) difficulty of the challenge
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age, historical features in registration, submission, winning and performance), chal-
lenge match features (such as language MD and technique MD), and interaction
influential features extracted from DIG (such as registration rank, submission rank and
winning rank). We extract four kinds of history data for developers, which are registra-
tion, submission, winning, and performance history. The registration history contains
registration frequency (the number of challenges the developer has registered with)
and the recency (the number of days since last registration). The submission history
and winning history contain similar frequency and recency features. For those with-
out corresponding history, we set the recency to infinite and the frequency to 0. The
performance features consist of last rank and last score, which refer to the ranking
and the score of the developers in the last challenge they participated in. We also
encode the skills of developers using the one-hot encoding method. Besides, we com-
pute the match degree between a developer’s skills and the techniques and languages
required by a challenge using the MD metric defined in Eq. 2. For example, if a chal-
lenge requires C# and JAVA and the skills of a developer contain JAVA and JS, then
the MD = 1/2 = 0.5. In essence, the MD metric characterizes the matching degree
between skills and requirements, which is also used in psychology (Edwards and Van
Harrison 1993) and software engineering community (Hauff and Gousios 2015). In
our work, the Topcoder platform provides tags to describe developer skills and chal-
lenge requirements, which helps us define the MD metric. For each challenge, we also
build a DIG for all developers based on their registration, submission, and winning his-
tory, respectively. For each DIG, we obtain the PageRank score for each developer. A
summary of developer features is shown in Table 3. The number of dimensions that
is used to encode each feature is also given. We concatenate all the features to get a
60-dimension developer feature vector.

MD = sharedSkills(developer,challenge)

allRequirements(challenge)

. (2)

– Input data construction: For each posted challenge, we concatenate the 60-dimension
developer feature vector with the 130-dimension challenge feature vector. The
concatenation forms an input instance for the base predictors. For model training, we
label each instance with the status (registered, submitted, or won). E.g. if a developer

Table 3 Developer feature encoding

Features Description

Skills (46) one-hot encoding of the skills

Member age (1) days the developer becomes a member of Topcoder

Technique MD (1) techniques match degree

Language MD (1) languages match degree

Registration (2) registration frequency and recency

Submission (2) submission frequency and recency

Winning (2) winning frequency and recency

Performance (2) the score and rank in the last challenge

Registration rank (1) the PageRank score in DIG on registration history

Submission rank (1) the PageRank score in DIG on submission history

Winning rank (1) the PageRank score in DIG on winning history
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registers with the posted challenge, we assign 1 as the label; else we assign 0. The con-
struction flow is illustrated in Fig. 4. Suppose there are m developers and n challenges,
we encode m developer features and concatenate each vector with the challenge feature
vector. Finally, we obtain m × n input vectors for training the model.

3.3 Base Predictors

Our policy model contains three base predictors (registration predictor, submission pre-
dictor, and winning predictor). Each predictor contains the following three base machine
learning algorithms:

– ExtraTrees (Geurts et al. 2006), which is a bagging machine learning algorithm that is
similar to the Random Forest algorithm (Breiman 2001). However, it selects the split-
ting attribute more randomly and performs better than Random Forest when there are
many attributes. In our work, We use the ExtraTrees implementation of the scikit-learn
package (Pedregosa et al. 2011).

– XGBoost (Chen and Guestrin 2016), which is a boosting algorithm that utilizes the
second-order derivative of the error to conduct its boosting stages to avoid local optima.
In our work, we use a scalable implementation of XGBoost at Chen et al. ().

– Neural network (Hinton and Salakhutdinov 2006), which is good at discovering hidden
relations in data. The network structure we used is a 3-layer dense network that contains
a 64-unit hidden layer 1, a 32-unit hidden layer 2, and an output layer. The activation
function of hidden layers is ReLu (Goodfellow et al. 2016). We use a Softmax function
in the output layer so that the output is in the range of 0 and 1. In our work, we use
the Keras package (Chollet et al. 2015) to implement the neural network in Tensorflow
(Abadi et al. 2016).

Fig. 4 Input data construction
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The errors of a prediction model always contain three parts: bias, variance, and random
error, which vary across different datasets (Valentini and Dietterich 2002; Domingos 2000).
This intrinsic characteristic of the machine learning model results in its instability among
different data. Except for the random error, both bias and variance can be eliminated or
decreased via proper modeling approach. According to the theories of the above three algo-
rithms, each of them has different inductive bias space which can fit well with some data
instances but may not fit well with other instances (Sanjana and Tenenbaum 2003; Navarro
et al. 2012). Therefore, we utilize these three algorithms to reduce the errors caused by
biased inductive assumption space. Note that our framework is generic and other machine
learning algorithms can be always incorporated.

We also utilize the Grid Search tool provided by the scikit-learn package (Pedregosa et al.
2011) to tune the hyper-parameters of machine learning algorithms. Grid Search is a sim-
ple case of hyper-parameter optimization (Hazan et al. 2017). Besides, we use Tensorflow
(Abadi et al. 2016) as the backend to leverage the GPU resource for improving the runtime
performance of the base predictors.

3.4 Meta-Learning Based Policy Model

3.4.1 Meta-Learning

Our proposed approach is based on meta-learning. Meta-learning aims at “learning to learn”
(Metalearning 2009), which can automatically improve the performance of existing learning
algorithms or induce the learning algorithms. Recently, it has been successfully used for
algorithm recommendation (Cunha et al. 2018), hyper-parameter tuning (Hazan et al. 2017),
and neural network optimization (Munkhdalai and Yu 2017), etc.

A typical meta-learning approach to algorithm recommendation (Cui et al. 2016; Al-
Shedivat et al. 2017) consists of four spaces, namely problem space, meta-feature space,
performance space, and algorithm space. The problem space includes the datasets of learn-
ing instances. The feature space is an abstract representation of the instances in the problem
space. The algorithm space contains candidate algorithms in a given context, and the
performance space is performance measurement of algorithms. The main goal is to select
the best performing algorithm in the spaces. Formally, for a given problem instance x ∈ P ,
with features f (x) ∈ F , find the selection mapping S(f (x)) into the algorithm space A,
such that the selected algorithm α ∈ A maximizes the performance mapping y(α(x)) ∈ Y

(Rice 1976).
In our work, we use the input data instances as the problem space. The three machine

learning algorithms described in previous section form the algorithm space. The meta-
feature space is constructed by the possible choices of base algorithms and threshold
parameters for all the base predictors (registration, submission, and winner). We evalu-
ate the model using accuracy metrics and form the performance space. We select the best
performing algorithm and thresholds given the spaces.

3.4.2 Tuning the Policy Model throughMeta-Learning

The policy model is the central part of the system. To predict winners, our model needs
the knowledge about developers’ registration and submission behavior, which is provided
by the registration and the submission predictors, respectively. A general structure of the
policy model is illustrated in Fig. 2, where P(Win) refers to the possibility that a developer
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will win a challenge. Our goal is to learn a sequence of predictions that can achieve the best
winning prediction accuracy.

Empirical Software Engineering (2020) 25:859–889 871



In order to achieve the best winning prediction accuracy (measured in terms of perfor-
mance metric), we select an optimal combination of threshold parameters and algorithms
through meta-learning (Cunha et al. 2018; Metalearning 2009). As we have three predictors
and each of them contains three base machine learning algorithms, we have 3*3*3 possible
combinations of the algorithms. The top R and top S are the threshold parameters that are
used by registration and submission predictors respectively and influence the final result.
For each of top R and top S, we consider their values ranging from 0 to 1, with a step of
0.01. Therefore, we have 100*100 possible choices of the threshold parameters. Then we
build a 5-dimension cube with each dimension representing one instance of meta-feature.
In total, the size of the meta-feature space is (3*3*3*100*100). We apply a search-based
method to find the optimal combination of basic algorithms and threshold parameters that
can achieve the best prediction performance. As the search space is not very large, we apply
Grid Search to exhaustively search the space. We use the top 3, top 5, top 10 accuracy and
MRR (Avazpour et al. 2014; Powers 2007; Aggarwal et al. 2016) as performance metrics to
guide the search process.

Having finished the training, we select the optimal setting of meta-features that achieves
the best winning prediction performance as the final setting for the policy model. The
whole process is illustrated in Algorithm 1. In essence, the meta-learning method regards
the learning context as the meta-features and evaluates them with respect to the perfor-
mance measure. The learning context that maximizes the recommendation performance of
the entire policy model is selected.

3.4.3 Using the Tuned Policy Model

Having tuned an optimal policy model, for a new challenge, we can apply the model to
obtain a list of recommended developers. Given a set of developers, the model filters out the
developers who are unlikely to register with and submit to the challenge, and recommends
a list of developers ordered by their probability of winning the challenge. For a large dataset
(e.g. Assembly, First2Finish, Code) that is divided into clusters (Section 3.2), when a new
challenge comes, we first assign it to a cluster and then use the policy model built for that
cluster to recommend developers.

4 Evaluation

In this section, we evaluate the proposed approach. We focus on the following research
questions:

RQ1: Can the Proposed Developer Recommendation Approach Outperform the Base-
line Methods? This RQ evaluates the overall effectiveness of the proposed approach and
compares it with the performance of three baseline methods described in Section 2.2. The
three baseline methods are CBC (Fu et al. 2017), CrowdRex (Mao et al. 2015), and DCW-
DS (Yang et al. 2016). These methods also extract features from challenges and developers
and use a machine learning algorithm for prediction. The CBC and CrowdRex methods
treat winner prediction as a multi-label classification problem. The DCW-DS method helps
developers estimate their roles (winner, submitter, or quitter) in a given challenge, and
formulates the problem as a single-label 3-value classification problem.

To enable the comparison with DCW-DS, we make prediction for all the developers to
see whether or not they could be a winner of a given challenge. In our work, we implement
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the three baseline methods, which can be accessed online.6 Among the three baselines,
CBC (Fu et al. 2017) is one of the works of our research teams; while for CrowdRex (Mao
et al. 2015)and DCW-DS (Yang et al. 2016), our implementation achieves similar results as
described in the original papers following their processing instructions. To achieve fair com-
parison, we apply Grid Search to all the baseline methods (using the scikit-learn wrapper)
so that we always compare with the baseline method with the best-performing parameters.
Besides, we do not filter developers with fewer than 5 winning records in the experiment.

RQ2: Is the Proposed Meta-Learning Based Policy Model Effective? This RQ evaluates
the effectiveness of the meta-learning based policy model, which is the core part of the
proposed approach. To evaluate the policy model, we compare it with the winning predictor
model, which directly predicts winner without using the policy model. That is, we skip the
registration and submission predictions (by setting the two parameters top R and top S to
100%) and use the output of WinningP redictor directly to recommend developers for a
given challenge. The rest are the same as the policy model.

As stated in Section 3.3, our meta-learning based policy model utilizes three basic algo-
rithms, namely Neural Network, ExtraTrees, and XGBoost. In this RQ, we also compare
the performance of the policy model with the performance of the three individual base
algorithms.

RQ3: How do Different Features Affect the Performance of Our Model? We have pro-
posed a set of features in Tables 2 and 3 for recommending reliable developers and we
need to understand the contribution of those features to the effectiveness of our Policy-
Model. Therefore we conducted an ablation study of the effect of different features on the
performance of the PolicyModel. We studied the following feature groups: 1) the technique-
related features of a challenge including languages and techniques, 2) the contents of a
challenge including title and requirement, 3) the time related features including posting
date and duration, 4) the features directly affecting the participation of developers including
prizes and difficulty, 5) the features about developers’ skills including skills, member age,
technique MD and language MD, 6) the features about the participation history of a devel-
oper including registration, submission, winning and performance, 7) the ranking features
of a developer obtained from DIG including registration rank, submission rank and winning
rank. We tested the model performance by removing the one of the listed feature groups.

4.1 Experimental Setting

For each Topcoder dataset (i.e., each type of challenge such as Conceptualization and Bug
Hunt), we firstly order all its challenges by the posting date from the oldest to the newest.
The dataset is then split into three parts: the first 70% of the oldest challenges are used for
training, the following 10% of challenges are used for validation, and the newest 20% of
challenges are used for testing. Our policy model building consists of two process which
are base predictor training using training dataset and meta-learning based policy model
tuning using validating set. As described in Section 3.2, to facilitate the training of classifi-
cation models, we balance the percentage of winner and non-winner through oversampling.
Unlike the construction of the training set, we use the original distribution of data and do
not perform oversampling in testing. For each challenge in the test set, our policy model

6https://github.com/zhangzhenyu13/CSDMetalearningRS/tree/master/Baselines
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recommends the top k developers from a set of candidate developers, who are comprised
of: 1) the developers who have winning history in this challenge type, including those
whose winning records occurs only in test set; 2) a number of randomly selected Top-
coder developers who have no winning history (in our experiments, the number of randomly
selected developers is the same as the number of developers who have winning history).
We will evaluate if the proposed approach can recommend the correct developers (win-
ners) for the challenge, and if developers who never won the challenge before could still be
recommended.

4.2 EvaluationMetrics

To evaluate the performance of the meta-learning based policy model, we leverage the
accuracy metric that is also used in related work (Mao et al. 2015; Fu et al. 2017). If the
top k results in the recommended list contain the actual winners (usually 1-2) of the chal-
lenge, we consider the recommendation effective and calculate the percentage of effective
recommendations for all challenges. Assume that we have N challenges and each is rec-
ommended with a list of developers, our accuracy metric is defined in Eq. 3, where N is
the number of challenges in the test set and hit denotes whether the top k list contains the
actual winners (winnersn) of the challenge (1 if an actual winner of the nth challenge is
in the top k list). Besides, we also apply another commonly-used metric Mean Reciprocal
Rank (MRR) (Chowdhury and Soboroff 2002), which is the average of the reciprocal ranks
of results of N challenges. The reciprocal rank of one recommendation list is the inverse
of the rank of the first hit result (denoted as Frankn). The higher the MRR, the better the
model performance.

Acc@k = 1

N

N∑

n=1

hit (winnersn, k) (3)

MRR = 1

N

N∑

n=1

1

Frankn

(4)

Note: as described in Section 3.2.1, for a challenge of Code, Assembly or First2Finish,
the recommendation will be made on the corresponding cluster. Then for each of the three
datasets of Code, Assembly and First2Finish, we collect the ACC@k and MRR results of
all the clusters, and report the weighted average. The weight is the percentage of challenges
in each cluster. For example, there are n1, n2, n3 and n4 challenges in the 4 clusters of
Assembly, thus the weight of each cluster of Assembly is ni/

∑4
1ni (1 ≤ i ≤ 4).

4.3 Experimental Results

4.3.1 RQ1: Can the Proposed Developer Recommendation Approach Outperform
the Baseline Methods?

Table 4 shows the recommendation accuracy of the proposed approach. The accuracy for
top-3 recommendation ranges from 22.4% to 84.8%, with an average of 46.7%. The accu-
racy for top-5 recommendation ranges from 30.1% to 91.1%, with an average of 57.1%.
The accuracy for top-10 recommendation ranges from 30.6% to 91.1%, with an average of
58.1%. Compared to the performance of baselines which are shown in Tables 5, 6 and 7,
these results are significantly better than those achieved by the three baseline methods.
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Table 4 The performance of
PolicyModel Dataset Acc@3 Acc@5 Acc@10 MRR

Architecture 0.596 0.702 0.705 0.397

Test suites 0.64 0.76 0.76 0.4

Content creation 0.238 0.333 0.365 0.21

Conceptualization 0.553 0.702 0.703 0.227

Design 0.406 0.486 0.502 0.213

Development 0.4 0.493 0.511 0.257

UI prototype 0.463 0.598 0.615 0.371

Bug Hunt 0.848 0.911 0.911 0.759

Code 0.224 0.301 0.306 0.11

First2Finish 0.322 0.445 0.457 0.137

Assembly 0.442 0.545 0.552 0.3

Average 0.467 0.571 0.581 0.312

Table 5 The performance of
CBC Dataset Acc@3 Acc@5 Acc@10 MRR

Architecture 0 0 0 0.019

Test suites 0.04 0.04 0.12 0.056

Content creation 0 0 0 0.021

Conceptualization 0 0 0 0.026

Design 0.232 0.341 0.478 0.177

Development 0 0 0 0.013

UI prototype 0.336 0.377 0.622 0.357

Bug hunt 0.687 0.758 0.83 0.828

Code 0.025 0.029 0.037 0.035

First2Finish 0.018 0.023 0.068 0.03

Assembly 0.237 0.304 0.35 0.211

Average 0.143 0.17 0.228 0.161

Table 6 The performance of
CrowdRex Dataset Acc@3 Acc@5 Acc@10 MRR

Architecture 0.006 0.007 0.338 0.071

Test suites 0 0 0 0.08

Content creation 0 0 0.095 0.044

Conceptualization 0.234 0.255 0.319 0.265

Design 0.079 0.152 0.347 0.124

Development 0.035 0.042 0.085 0.044

UI prototype 0.07 0.07 0.111 0.093

Bug hunt 0.312 0.321 0.366 0.411

Code 0.002 0.009 0.026 0.022

First2Finish 0.035 0.047 0.068 0.043

Assembly 0.115 0.134 0.168 0.107

Average 0.081 0.094 0.175 0.119
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Table 7 The performance of
DCW-DS Dataset Acc@3 Acc@5 Acc@10 MRR

Architecture 0.026 0.066 0.258 0.076

Test suites 0 0.04 0.36 0.067

Content creation 0 0 0 0.068

Conceptualization 0.17 0.277 0.362 0.219

Design 0.079 0.123 0.289 0.099

Development 0.186 0.236 0.271 0.129

UI prototype 0 0.008 0.016 0.025

Bug Hunt 0 0 0 0.033

Code 0.036 0.048 0.079 0.067

First2Finish 0.004 0.013 0.045 0.022

Assembly 0.161 0.215 0.28 0.16

Average 0.06 0.093 0.178 0.088

The average improvement of PolicyModel over the baseline methods is about three to five
times. Table 8 shows the average performance of the baselines and the policy model side by
side. Figure 5 also shows the MRR boxplots for all the comparative methods. The baseline
methods can perform well for some challenges (refer to the outliers of the box-plot), while
the average results are all lower than the PolicyModel. Clearly, the proposed approach
achieves better overall accuracy in terms of MRR. We also use the experiment to help ana-
lyze why the baseline methods perform less satisfactory. The baseline methods recommend
developers who have several historical winning records and filter away those developers
with a few (1 or 2) winning records and the corresponding challenges. Thus the baselines
can only recommend skillful developers and perform well on a subset of the datasets. How-
ever, in reality, many challenges are won by less skillful winners, thus when applying the
baseline methods to the actual, complete datasets, their performance is less satisfactory. The
major reason is due to baselines’ limitation of only including developers with at least five
winning records in the training data. However, we even get a worse result if we ignore this
limitation. Because it significantly expands the developer set, the data becomes at least 10
times more sparse, which makes recommendation very challenging. The experiment results
show that it is quite hard to overcome the difficulty of this limitation. Our policy model
performs better than baseline methods because we leverage the concept of meta-learning to
extract registration, submission, and winning meta-features via the meta-models. The meta
models contain policy knowledge so that we can build a more accurate and general model.

4.3.2 RQ2: Is the Proposed Meta-Learning Based Policy Model Effective?

In order to evaluate the effectiveness of policy model, we test the performance of winner
predictor alone to demonstrate the necessity of registration and submission predictors. We

Table 8 The performance of
baseline methods and policy
model

Methods Acc@3 Acc@5 Acc@10 MRR

CBC 0.143 0.17 0.228 0.161

CrodRex 0.081 0.094 0.175 0.119

DCW-DS 0.06 0.093 0.178 0.088

PolicyModel 0.467 0.571 0.581 0.312
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Fig. 5 The MRR of baseline methods and policy model

also test the performance of the three base machine learning algorithms to demonstrate the
necessity of meta-learning. The results are shown in Tables 9, 10, 11 and 12. Compared
with the result of winning predictor (which predicts winner directly without using the policy
model), the policy model improves the average top 3, top 5, and top 10 accuracy by 0.21,
0.27, and 0.21, respectively. The experiment results confirm the effectiveness of our meta-
learning based policy model. The winning predictor component performs poorly in some
datasets because it contains no knowledge for registration and submission status. Therefore,
those who did not register with or submit to the challenge may be wrongly predicted as
winners. The proposed policy model can improve the performance because it can predict
developer’s registration and submission behavior when there is no observed registration or
submission status.

In our meta-learning based policy model, we use three base algorithms as meta-features
(Neural Network, ExtraTrees, and XGBoost). We evaluate the effectiveness of recommen-
dation using each individual algorithm alone. The results are also given in Tables 9, 10
and 11. Table 13 shows the average performance of the base algorithms and the policy

Table 9 The performance of
NeuralNetwork Dataset Acc@3 Acc@5 Acc@10 MRR

Architecture 0.43 0.43 0.444 0.306

Test suites 0.2 0.36 0.6 0.225

Content creation 0.095 0.095 0.095 0.126

Conceptualization 0.128 0.128 0.17 0.146

Design 0.08 0.08 0.116 0.089

Development 0.007 0.021 0.086 0.031

UI prototype 0 0.004 0.033 0.024

Bug hunt 0 0 0 0.024

Code 0.0141 0.0248 0.0503 0.03

First2Finish 0.004 0.01 0.066 0.024

Assembly 0.016 0.041 0.103 0.04

Average 0.089 0.108 0.16 0.209
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Table 10 The performance of
ExtraTrees Dataset Acc@3 Acc@5 Acc@10 MRR

Architecture 0.311 0.358 0.377 0.156

Test suites 0.28 0.28 0.28 0.134

Content creation 0.095 0.095 0.095 0.149

Conceptualization 0.277 0.319 0.382 0.246

Design 0.174 0.238 0.29 0.132

Development 0.257 0.271 0.279 0.159

UI prototype 0.258 0.307 0.41 0.307

Bug hunt 0.509 0.509 0.509 0.74

Code 0.0211 0.0457 0.0527 0.042

First2Finish 0.036 0.047 0.073 0.045

Assembly 0.085 0.112 0.157 0.087

Average 0.239 0.235 0.264 0.06

Table 11 The performance of
XGBoost Dataset Acc@3 Acc@5 Acc@10 MRR

Architecture 0.026 0.066 0.258 0.076

Test suites 0 0.04 0.36 0.068

Content creation 0 0 0 0.068

Conceptualization 0.17 0.277 0.362 0.219

Design 0.08 0.123 0.289 0.098

Development 0.186 0.236 0.271 0.129

UI prototype 0 0.008 0.016 0.025

Bug hunt 0 0 0 0.033

Code 0.037 0.0487 0.079 0.067

First2Finish 0.004 0.013 0.046 0.022

Assembly 0.161 0.215 0.28 0.161

Average 0.06 0.093 0.178 0.088

Table 12 The performance of
WinnerPredictor Dataset Acc@3 Acc@5 Acc@10 MRR

Architecture 0.43 0.43 0.444 0.306

Test suites 0.28 0.36 0.583 0.225

Content creation 0.143 0.19 0.19 0.149

Conceptualization 0.34 0.404 0.554 0.246

Design 0.174 0.283 0.29 0.132

Development 0.257 0.271 0.279 0.159

UI prototype 0.212 0.32 0.439 0.307

Bug hunt 0.723 0.741 0.759 0.74

Code 0.045 0.074 0.117 0.067

First2Finish 0.036 0.049 0.082 0.035

Assembly 0.161 0.215 0.28 0.161

Average 0.257 0.301 0.367 0.231
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Table 13 The performance of
base algorithms, winner predictor
and policy model

Methods Acc@3 Acc@5 Acc@10 MRR

Neural networks 0.089 0.108 0.16 0.209

Extratrees 0.239 0.0.235 0.264 0.06

XGBoost 0.06 0.093 0.178 0.088

WinnerPredictor 0.257 0.301 0.367 0.231

PolicyModel 0.467 0.571 0.581 0.312

model side by side. The box-plots of MRR results are shown in Fig. 6. Clearly, each of the
three base algorithms achieves lower MRR than the proposed PolicyModel, because of the
inductive assumptions they make. However, our policy model uses meta-learning to select
the best algorithm for different data, thus the overall performance is greatly improved.

4.3.3 RQ3: How do Different Features Affect the Performance of Our Model?

Tables 14, 15 and 16 show the experimental results of the ablation study for different fea-
ture groups on the Assembly, Test Suites and Bug Hunt datasets, respectively. Compared
with the performance of PolicyModel in Table 4, the importance of each feature group can
be observed. The most important features are feature(5) and feature(6), which means that
the skill related attributes and the participation history are very important to identify reli-
able developers. Feature(1) and feature(2) are also important as they specify the detailed
information of the challenges which are usually considered by developers for selecting chal-
lenges. Developers will not be reliable if they are recommended to finish challenges that
they are unwilling to choose. The ranking scores of developers (i.e. feature(7)) are also
critical to the PolicyModel as they can measure the influential factors of developers in a
challenge. Therefore DIG is useful. The incentive and difficult factors of a challenge (fea-
ture(4)) are not that important, the reason of which might be that many developers can
hardly estimate the difficulty of a challenge and the motivation of many developers for par-
ticipating in a challenge is to accumulate reputation or improve skills. And feature(3) have
the least influence on the performance, which means that developers care less about posting
date and challenge duration.

Fig. 6 The MRR of three base algorithms, winner predictor and policy model
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Table 14 The ablation study of
different features on assembly Dataset Acc@3 Acc@5 Acc@10 MRR

-feature(1) 0.411 0.516 0.535 0.287

-feature(2) 0.411 0.507 0.512 0.283

-feature(3) 0.442 0.543 0.549 0.3

-feature(4) 0.439 0.533 0.548 0.296

-feature(5) 0.372 0.397 0.408 0.247

-feature(6) 0.385 0.388 0.409 0.252

-feature(7) 0.413 0.508 0.52 0.288

All 0.442 0.545 0.552 0.3

Table 15 The ablation study of
different features on test suites Dataset Acc@3 Acc@5 Acc@10 MRR

-feature(1) 0.536 0.617 0.634 0.349

-feature(2) 0.52 0.597 0.653 0.323

-feature(3) 0.571 0.635 0.678 0.377

-feature(4) 0.554 0.628 0.645 0.356

-feature(5) 0.429 0.465 0.496 0.318

-feature(6) 0.437 0.458 0.499 0.312

-feature(7) 0.545 0.598 0.644 0.385

All 0.64 0.76 0.76 0.4

Table 16 The ablation study of
different features on bug hunt Dataset Acc@3 Acc@5 Acc@10 MRR

-feature(1) 0.768 0.819 0.821 0.633

-feature(2) 0.776 0.824 0.825 0.645

-feature(3) 0.826 0.893 0.897 0.734

-feature(4) 0.817 0.865 0.874 0.728

-feature(5) 0.739 0.796 0.815 0.597

-feature(6) 0.748 0.793 0.831 0.602

-feature(7) 0.783 0.816 0.836 0.667

All 0.848 0.911 0.911 0.759
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In summary, we propose a study for exploring the influence of different features, where
we have implemented a general method through applying masks to the input to eliminate the
function of the masked features. The results show that the importance of different features
is slightly different across datasets. Additionally, Calefato et al. (2018) have studied how to
ask questions more effectively in Stack Overflow, and our study on the importance of the
those features also show some insights for both developers and customers. Developers need
to enhance their skills and participate more frequently and actively for winning a challenge
in future. Customers can know which are the most important attributes when they post
challenges.

5 Discussions

The experimental results described in the previous section show that our developer rec-
ommendation approach outperforms the existing ones. The results also show that the
proposed meta-learning PolicyModel is effective. To better analyze the capacity of our
recommendation approach, we consider the following problems:

– Can our model recommend new winners in CSDs?
– How does our model perform for the recommendation in each stage?

5.1 Support for Recommending New Developers

Our model is different from the existing methods for developer recommendation in CSD.
As we have discussed, existing methods either consider only the developers who have suffi-
cient winning records or assume the registration/submission status, which rule out the other
developers to be recommended. The essential reason for existing methods to make such
assumption is that they cannot handle the data sparsity well. We do not make any assump-
tion about developer status (registration or submission). We build a PolicyModel to predict
the developer status. Instead of using a fixed set of developers as labels to build a multi-label
classification model, our PolicyModel outputs a probability value for each developer and
ranks the developers by the probability values. In light of the limitation of existing methods,
on the one hand our PolicyModel divides the recommendation process into three stages; on
the other hand our model employ meta-learning to tune the learning parameters. The adop-
tion of the three-stage recommendation filters away the irrelevant data step by step, thus

Table 17 The percentage of
winners who do not appear in the
training phase

Dataset Missing Dataset Missing

Architecture 55% Development 70.8%

Conceptualization 82% Bug Hunt 85.2%

Content creation 92.4% Design 47.5%

Assembly 59.3% Code 88.4%

Test suites 85% First2Finish 78.6%

UI prototype 65.3%
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Table 18 The performance of our
PolicyModel in registration stage Dataset Acc@3 Acc@5 Acc@10 MRR

Architecture 0.544 0.589 0.637 0.633

Test suites 0.448 0.522 0.726 0.274

Content creation 0.23 0.251 0.296 0.18

Conceptualization 0.577 0.629 0.781 0.451

Design 0.299 0.351 0.587 0.201

Development 0.407 0.56 0.729 0.318

UI prototype 0.579 0.833 0.833 0.618

Bug hunt 0.735 0.79 0.845 0.667

Code 0.212 0.294 0.388 0.153

First2Finish 0.466 0.563 0.751 0.415

Assembly 0.3 0.374 0.519 0.151

Average 0.436 0.523 0.644 0.369

reduce the data sparsity. At the same time, the meta-learning approach can fit the sparse data
better by automatically tuning the parameters. Therefore our model can predict a developer
as a potential winner according to the developer’s participation history and current challenge
requirements, despite that the developer has never won before. Table 17 shows that 47.5%
to 92.4% of the winners are new developers who do not appear in the training phase (we use
the term Missing to denote it). For example, there are 2999 winners in the Code dataset and
only 347 (11.6%) winners appear in the training phase (in the training and validation sets).
In fact, the test set contains relatively new members of Topcoder, who have fewer historical
records than those in the training set. The results confirm that our model can recommend
potential winners even though they have never won any challenge before.

5.2 Recommendation Performance in Each Stage

We further analyze the performance of our model for each stage. Tables 18, 19 and 20 show
the experimental results for recommending registers, submitters and winners, respectively.
For each challenge and all the candidate developers, we filtered away those that do not

Table 19 The performance of our
PolicyModel in submission stage Dataset Acc@3 Acc@5 Acc@10 MRR

Architecture 0.915 0.954 0.993 0.87

Test suites 0.915 0.927 0.969 0.755

Content creation 0.762 0.857 0.915 0.514

Conceptualization 0.468 0.638 0.787 0.269

Design 0.768 0.949 0.96 0.595

Development 0.657 0.843 0.869 0.667

UI prototype 0.656 0.795 0.85 0.502

Bug hunt 0.67 0.777 0.893 0.285

Code 0.385 0.455 0.604 0.188

First2Finish 0.827 0.853 0.928 0.694

Assembly 0.809 0.828 0.889 0.496

Average 0.712 0.806 0.877 0.53
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Table 20 The performance of our
PolicyModel in winning stage Dataset Acc@3 Acc@5 Acc@10 MRR

Architecture 0.92 0.95 0.967 0.64

Test suites 0.945 0.96 0.999 0.557

Content creation 0.857 0.905 0.952 0.318

Conceptualization 0.723 0.83 0.936 0.305

Design 0.937 0.955 0.969 0.736

Development 0.921 0.95 0.957 0.699

UI prototype 0.905 0.948 0.988 0.82

Bug Hunt 0.901 0.96 0.994 0.815

Code 0.853 0.915 0.954 0.585

First2Finish 0.894 0.925 0.968 0.533

Assembly 0.892 0.937 0.991 0.6

Average 0.886 0.93 0.97 0.6

register with the challenge when evaluating the submission stage because we only con-
sider whether a registered developer will make submission. Likely, we filtered away those
developers that do not submit when evaluating the winning stage because we only consider
whether a developer that submits can win. In the evaluation of registration stage, we did
not filter away any developer as it is the first stage. The experimental results show that our
model achieves 0.369, 0.53 and 0.6 MRR scores in average for registration, submission and
winning stages, respectively. It is also worth mentioning that in the winning stage we obtain
0.886 Acc@3 score, 0.93 Acc@5 score and 0.97 Acc@10 score in average, which is mainly
due to that many incompetent developers are filtered away in the two previous stages. Those
with high winning frequency are very likely to win for a new challenge and therefore some
previous works (Fu et al. 2017; Mao et al. 2015) filter away the developers without high
winning frequency to improve the evaluation performance. However, such processing is
biased because the statistics in Table 17 show that quite a few winners of a challenge are
“first-time winners”. The performance of the registration stage is not as good as that of the
later stages because there are many developers to consider for the first stage. The DCW-DS
in our baselines is based on the binary classification, which can be easily affected by the
error accumulation of each stage as the pipeline is a direct combination of the predication
results of each stage. In our PolicyModel, we adopt meta-learning to optimally combine the
learners in the three stages, which significantly improves the recommendation performance.

6 Threats to Validity

We identify the following threats to validity:

– Subject selection bias. In our experiment, we only use 11 Topcoder datasets as exper-
imental subjects. In fact, we collected 29 representative types of challenges posted
between January 2009 and February 2018 in Topcoder. However, 18 of them contain
fewer than 10 unique winners and a small number of challenges, therefore we discarded
them. Among the remaining 11 types of challenges, 4 of them are also used in related
work (Fu et al. 2017; Mao et al. 2015). Although our datasets are much larger than those
used in related work, we will further reduce this threat by crawling more data from Top-
coder in future. Furthermore, although Topcoder is a leading CSD platform, we will
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also seek to collect data from other CSD platforms to enhance the generalizability of
our approach.

– Algorithm selection. In this paper, we choose 3 base machine learning algorithms (Neu-
ral Network, ExtraTrees, and XGBoost). Clearly, there are many other algorithms and
it is unrealistic to test with all possible algorithm combinations. In this work, we pur-
posely choose 3 algorithms that have different inductive biases that can complement
each other. The selected 3 algorithms are widely used in industry and perform well in
most cases. And our model is flexible to allow readers to incorporate other algorithms
(, while we recommend to select at least one bagging and one boosting algorithms for
their ability to reduce variance and bias respectively).

– Feature engineering. We have identified many features about challenges and devel-
opers to build our model, including the features used in related work. However, it is
possible that there are other representative features. Furthermore, semantic features of
textual descriptions (such as those identified through deep learning) could also be used.
Systematic feature engineering will be studied in our future work.

– Benefits for CSD platforms. In this work, we conducted experiments to evaluate the
effectiveness of our approach with the history datasets of Topcoder. Our model advance
the state-of-the-art by removing the assumption of the number of winning records and
the registration/submission status. However, merely recommending winners for posted
challenges may discourage newcomers and less skillful developers, which can affect
the long-term development of a CSD platform. We will investigate the benefits of our
approach to real CSD platforms and obtain the feedback from real task requesters and
developers in future work.

– Although Archak (2010) observed the interaction influence between developers, they
did not propose a method to model such influence. Therefore, we propose the IR mea-
sure in this work (Section 3.2.2). Although our ablation study (Section 4.3.3) shows that
DIG is useful, the IR measure has not been validated and the ground truth could differ
from this conceptualization. In the future, we will consider obtaining the ground truth
about the deterring relationship through a survey and compare the values obtained by
measuring IR with the ground truth. We will also explore the construction of the DIG
with different measures.

7 RelatedWork

7.1 Developer Recommendation in CSD

Recommendation system has been an active research topic in software engineering. Various
methods have been proposed to recommend code reviewers (Hannebauer et al. 2016), bug-
fixers (Anvik et al. 2006; Hu et al. 2014), question answerers (Choetkiertikul et al. 2015;
Procaci et al. 2016), programming-related information (Ponzanelli et al. 2017), APIs (Yuan
et al. 2018; Gu et al. 2016), etc. The proposed recommendation methods in existing work
provide helpful background knowledge for studying the crowdsourcing developer recom-
mendation. However, as each method is highly tuned for specific application scenarios and
datasets, existing methods cannot be directly applied for Topcoder-like CSD platforms.

There is also much work on developer recommendation for CSD. For example, Fu et al.
(2017) proposed a clustering based collaborative filtering classification model built using
Naive Bayes algorithm, and formulated the winner prediction problem as a multi-label clas-
sification problem. Baba et al. (2016) proposed a crowdsourcing contest recommendation
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model for participation and winner prediction. However, their experiment results show that
their model performs poorly when no participation information is available. We have also
discussed and compared with the CBC (Fu et al. 2017), CrowdRex (Mao et al. 2015), and
DCW-DS (Yang et al. 2016) work in this paper. Our experimental results show that the
proposed meta-learning based policy model outperforms the related work.

There is also much research that studies crowd developers in CSD. For example, Alelyani
and Yang (2016) conducted research to study the behavior of developers in Topcoder.
They found many factors that can represent the developers’ reliability. Saremi et al. (2017)
performed an empirical study of crowd developers in Topcoder and investigated their avail-
ability and performance on the tasks. Abhinav et al. (2017) proposed a multidimensional
assessment framework for hiring CSD workers. Dwarakanath et al. (2016) pointed out the
untrustworthiness of some crowd developers, who could lead to task failure. Javadi Khas-
raghi and Aghaie (2014) investigated the relationship between developers’ participation
history and performance. In our work, we consider the features mentioned above and also
add some new features (such as the Developer Influence Graph and the MD metric) based
on the characteristics of CSD.

Instead of recommending developers, Karim et al. (2018) studied the problem of recom-
mending tasks for crowdsourcing software developers by considering the exploitation and
exploration motives of developers, and they proposed the EX2 system that defines both the
“LEARN” and “EARN” scores to characterize developers. Especially, with the “LEARN”
score, EX2 can make recommendation for the newcomers who even do not have any his-
tory in a CSD platform. Ye et al. (2018) also consider the skill learning requirements of
crowdsourcing developers for recommending teammates in Kaggle. We believe the learning
motive can be incorporated to complement our model for solving the cold-start problem.

7.2 Meta-Learning and Parameter Tuning

A meta-learning model is characterized by its capacity of learning from previous expe-
riences and to adapt its bias dynamically conforming to the target domain (Brazdil
et al. 2008). Meta-learning can also help build better models on small training datasets
(Munkhdalai and Yu 2017). According to the work of Al-Shedivat et al. (2017), humans can
leverage previously learned policies and apply them to new tasks. They leverage previously
trained networks to store policies and apply them to build new models. Cui et al. (2016) pro-
posed a meta-learning framework to recommend the most proper algorithms for the whole
system accurately.

Recently, there are also some research on software defect prediction through meta-
learning. For example, Tantithamthavorn et al. (2016) found that an automated parameter
optimization technique named Caret can significantly enhance the performance of software
defect prediction models. Porto et al. (2018) proposed and evaluated a meta-learning solu-
tion designed to automatically select and recommend the most suitable Cross-Project Defect
Prediction (CPDP) method for a project. They found that the meta-learning approach can
leverage previously experiences and recommend methods dynamically. In our work, we
apply meta-learning to tune a policy model for developer recommendation.

8 Conclusion

In this paper, we propose a meta-learning based PolicyModel, which can recommend suit-
able crowd developers for crowd-sourced tasks (challenges). Our approach can recommend
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developers regardless of their registration or submission status, which is more realistic in
practice. Through meta-learning, we build a PolicyModel to filter out the developers who
are unlikely to register with a challenge and submit work, and find the reliable developers
who are more likely to win the challenge. Our experiments on Topcoder datasets confirm the
effectiveness of the proposed approach. Our tool and experimental data is publicly available
at: https://github.com/zhangzhenyu13/CSDMetalearningRS.

In the future, we will experiment with other CSD platforms and the ecosystem of CSD
(Li et al. 2015) to understand to what extent our approach can benefit real CSD. We also
plan to build a challenge recommendation system considering the relationship among chal-
lenges. Such a system can also facilitate timely completion of the challenges posted by
customers. We will investigate the benefits of our approach to real CSD platforms and obtain
the feedback from real task requesters and developers in future work.
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