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ABSTRACT
Deep learning has made significant achievements in many appli-
cation areas. To train and test models more efficiently, enterprise
developers submit and run their deep learning programs on a shared,
multi-tenant platform. However, some of the programs fail after a
long execution time due to code/script defects, which reduces the
development productivity and wastes expensive resources such as
GPU, storage, and network I/O.

This paper presents the first comprehensive empirical study on
program failures of deep learning jobs. 4960 real failures are col-
lected from a deep learning platform in Microsoft. We manually
examine their failure messages and classify them into 20 categories.
In addition, we identify the common root causes and bug-fix solu-
tions on a sample of 400 failures. To better understand the current
testing and debugging practices for deep learning, we also conduct
developer interviews. Our major findings include: (1) 48.0% of the
failures occur in the interaction with the platform rather than in the
execution of code logic, mostly due to the discrepancies between
local and platform execution environments; (2) Deep learning spe-
cific failures (13.5%) are mainly caused by inappropriate model
parameters/structures and framework API misunderstanding; (3)
Current debugging practices are not efficient for fault localization
in many cases, and developers need more deep learning specific
tools. Based on our findings, we further suggest possible research
topics and tooling support that could facilitate future deep learning
development.
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• Software and its engineering→ Software defect analysis.
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1 INTRODUCTION
In recent years, deep learning (DL) has rapidly emerged as one of
the most successful machine learning techniques. With the massive
growth in computing power and data volume, deep learning has
been widely applied in various areas (such as speech and image
recognition, natural language processing, gaming with reinforce-
ment learning, etc.), leading to many significant and exciting results
that may previously have seemed out of reach.

To help data scientists train and test their deep learning mod-
els, enterprises build dedicated platforms such as Microsoft Azure
Machine Learning [3], Amazon SageMaker [1], and Google Cloud
AI [2] that allow multiple developers to submit and execute their
deep learning programs. These platforms are shared, multi-tenant,
and equipped with a large number of CPUs, GPUs or new AI accel-
erators like TPUs, providing support for a variety of deep learning
frameworks such as TensorFlow (TF) [7], PyTorch [30], MXNet [10],
and CNTK [37].

Philly is a similar deep learning platform in Microsoft, built with
widely used open-source technologies and typical computing hard-
ware. Every day, thousands of deep learning jobs are submitted to
Philly by tens of research and product teams. However, we found
that a noticeable percentage of these jobs threw runtime excep-
tions due to code or script defects and failed to complete. Such
failures, especially those happened after a long time of execution,
led to an expensive waste of shared resources such as GPU, stor-
age, and network I/O. For example, a job had been running for 40
hours on 4 NVIDIA Tesla P100 GPUs and then triggered a Directo-
ryNotFound exception due to a wrong path configuration of test
images. Furthermore, the stochastic nature of deep learning train-
ing process could also cause sudden, unexpected failures. Therefore,
understanding the categories and root causes of job failures is very
important for improving program quality and saving precious re-
sources. Moreover, it can also provide guidance for preventing,
detecting, debugging, and fixing of program defects associated with
deep learning jobs.

Although there have been a number of empirical studies on
defects of machine learning/deep learning programs [22, 38, 40, 49],
there is little work on program failures of deep learning jobs running
on a remote, shared platform. The most related research is reported
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by Zhang et al. [49] and Islam et al. [22] on deep learning program
bugs. However, their subjects are collected from GitHub issues
and Stack Overflow questions, which are different in many aspects
from the industrial jobs on Philly. Another related work by Jeon et
al. [23] studies the behavior of deep learning jobs within Microsoft.
However, their purpose is to understand cluster GPU utilization
rather than reducing job failures.

In this paper, we conduct the first comprehensive empirical study
on program failures and fixes of deep learning jobs. We study 4960
failed jobs submitted by hundreds of developers in Microsoft. Those
failures are caused by developers’ code/script defects, and we ex-
clude the underlying hardware or system failures. Programs may
have been tested locally before job submission, hence some failures
that could be resolved by local testing may not be present in our
study. The purpose of this study is to provide a systematic and
generalized understanding on deep learning job failures, which
could facilitate failure reduction and resource saving in a shared
platform. Specifically, our study intends to address the following
research questions:

• RQ1: What types of deep learning job failures are more fre-
quent? To answer this question, we manually examine the
failure messages of 4960 failed jobs and classify them into 20
categories. We obtain many findings. For example, 48.0% of
the failures occur in the interaction with the platform rather
than in the execution of code logic, mostly due to the discrep-
ancies between local and platform execution environments.
The detailed results will be reported in Section 4.

• RQ2:What are the common root causes of failed deep learn-
ing jobs? To answer this question, we select a sample of
400 failed jobs and manually identify their root causes by
examining the source code and associated job scripts. For
some intricate ones, we contact the developers for clarifica-
tion. We also investigate how developers fixed the faults. We
obtain many findings. For example, deep learning specific
failures (13.5%) are mainly caused by inappropriate model pa-
rameters/structures and API misunderstanding. The detailed
results will be reported in Section 5.

• RQ3: What are the current testing and debugging practices
in deep learning programming? To answer this question, we
conduct in-depth face-to-face interviews with 6 representa-
tive developers from Microsoft. We find that current testing
and debugging practices are inefficient in many cases. The
detailed results will be reported in Section 6.

Based on our empirical study, we also summarize the lessons
learned and suggest future tooling support for deep learning testing
and debugging. For example, we suggest possible extensions for
Philly and DL frameworks.

In summary, this paper makes the following contributions:
• We perform the first comprehensive study on program fail-
ures of deep learning jobs. We classify 4960 failures and
manually analyze the root causes of 400 among them.

• We point out implications of our findings and suggest pos-
sible improvements for the development of deep learning
platforms and frameworks.

The rest of the paper is organized as follows. In Section 2, we
give an overview of the new deep learning programming paradigm
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Figure 1: Overview of the infrastructure and job life cycle.

and the platform Philly. Section 3 describes the study methodology.
Section 4 and Section 5 present the failure classification, root causes
and fixes. Section 6 presents our user study on current testing
and debugging practices in the production environment. Section 7
discusses the generality of our study and future research work for
failure reduction. We survey related work in Section 8 and conclude
this paper in Section 9.

2 BACKGROUND
2.1 Deep Learning Programs
Deep learning (DL) is a subfield of machine learning, which learns
layered data representations called neural networks or models. De-
velopers write DL programs using frameworks such as TensorFlow,
PyTorch, MXNet or CNTK, plus toolkit libraries like NumPy [28],
DLTK [31], Detectron [16], and Fairseq [15]. Python is the most
popular programming language, while C++ or Java are also used in
some cases.

Typical DL code is composed in three logically consecutive
stages: data pre-processing, model training & validation, and model
evaluation. The first stage is usually for input data cleaning and aug-
mentation (e.g., randomly cropping input images for more training
data). Next, developers construct the model using computational
primitives such as basic neural network layers (e.g., CNN), activa-
tion functions (e.g., ReLU), loss function optimizers (e.g., Adam[25]),
and variable initializers. The model consists of weight parameters
of layers and allows tensors (multi-dimensional arrays of numerical
values) to flow across. Training is actually to find the best weight
parameters by updating the model iteratively until its learning
performance (e.g., loss and accuracy) meets the requirements. Vali-
dation is executed once every several training iterations to provide
timely feedback for decision of hyperparameter (e.g., learning rate,
number of hidden units) tuning or early stop. In the last evaluation
(i.e., testing) stage, developers quantify the final model performance.

2.2 Deep Learning Jobs on Philly
Philly is a DL platform in Microsoft, deployed on multiple physical
clusters equipped with different generations of GPUs. Every day,
thousands of jobs from both research and product teams are exe-
cuted on Philly, includingmachine translation (e.g., Transformer [43]),
reading comprehension (e.g., BERT [13]), object detection (e.g., Mask
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R-CNN [21]), gaming (e.g., DQN [27]), advertisement (e.g., Wide &
Deep [11]), etc.

The workflow of job submission and execution in Philly is similar
to that of Microsoft Azure Machine Learning, Amazon SageMaker,
and Google Cloud AI. Figure 1 gives an overview of the job life cycle
in Philly. Developers first upload their code/scripts and input data
to the distributed storage. Then, they specify the job configuration
such as the numbers of desired processes/GPUs, Docker [26] image,
input/output folders, and the main Python code file. Philly offers
Docker images of standard deep learning toolchain to establish a
hermetic job execution environment. Nevertheless, custom Docker
images are also allowed to suit additional software requirements
(e.g., to install dependent Python libraries). Multiple jobs with the
same program but different hyperparameters could be submitted
together in either manual or automated way [17, 35] to search for
the best model. Jobs initially wait in queues for scheduling. Once
a job is chosen, Philly instantiates Docker containers to execute
the launching Shell script and later run the main Python code
file. The job may fail if a Python exception or Shell error code is
thrown. Philly could automatically re-run it for a certain number
of times [23] to recover from non-deterministic system failures
for fault-tolerance. Each run instance is called a retry. In the end,
the job will enter one of the three terminal states: SUCCEEDED,
KILLED (proactive termination by developers), and FAILED.

Note that although Philly is developed byMicrosoft, it is actually
similar in principle to other commonly used industrial DL platforms.
The hardware, system architecture, and job submission/execution
mechanism of Philly are widely adopted [9, 23, 47]. Furthermore,
most DL programs executed on Philly also use the programming
paradigm (such as Python and TensorFlow) that is common in DL
development.

3 METHODOLOGY
3.1 Subjects
We took failed deep learning jobs on Philly as our study subjects.
These jobswere submitted by research and product teams inMicrosoft
and had the final status “FAILED”. For each failed job, we collected
all related information including input data, source code, job scripts,
execution logs, and runtime statistics for analysis.

Failures in our study manifested as unexpected runtime errors
that led to job termination. We did not study semantic errors where
a job finished successfully but its results were different from the
expectation as we had no test oracles. We also excluded failed jobs
caused by hardware malfunction or system issues because they
were beyond the scope of this study. Since developers may have
tested their programs locally before job submission, some failures
that could be resolved by local testing may not be present in the
subjects.

To investigate failure classification, we chose 4960 failed jobs
caused by developers’ code/script defects within a three-week pe-
riod in October 2018. We called this set the Full Sample Set. Due
to the retry mechanism of Philly, a failed job may have several in-
stances, and we only considered the last one. To further understand
the root causes and fixes, we randomly selected 400 out of the total
failed jobs and performed detailed analysis of them. We called this
set the Small Sample Set.

3.2 Failure Classification
Job failures in Full Sample Set were manually classified based on
their runtime error types. For each failed job, we first located the fail-
ure messages by searching the execution logs with keywords such
as assert, wrong, error, exception, fault, fail, crash, unsuccessful, etc.
Then, we manually inspected all the related log messages around
the failures, understood the context, filtered out the false positives,
located the actual failure that led to job termination, and catego-
rized it. For example, a failure with the message “cuda runtime error
(2) : out of memory” is categorized into GPU Out of Memory, instead
of CPU Out of Memory. We also grouped all failure categories into 4
major dimensions from the execution point of view: Deep Learning
Specific, Execution Environment, General Code Error, and Data. We
discussed the category of each failure in our group meetings until
a consensus was reached. If there was a discrepancy, we contacted
the job submitter for help.

3.3 Root Cause and Fix Identification
We manually studied the source code and scripts of each failed job
in Small Sample Set. For data related failures, additional inspection
on the corresponding input data was carried out. For each failure,
we then analyzed its occurrence stage and root cause. We also
identified a later “fixed” version of the job by matching both job
and submitter names, and examined the bug-fixing changes by
comparing the failed and fixed versions. If a complicated fix was
beyond our understanding, we contacted the job submitter for
clarification. To calculate a failure’s runtime cost, we simply counted
its total GPU service time (i.e., GPU number × job execution time).

3.4 Threats To Validity
Threats To Internal Validity. Due to the complex nature of the
work and a large amount of manual effort, subjectivity may exist in
failure classification and root cause analysis. To reduce this threat,
we strived to achieve group consensus before making decisions.
For unclear or difficult job failures, we also directly communicated
with the developers to seek clarification.
Threats To External Validity. Our study subjects are all collected
from Philly. Although there are apparent similarities in the deep
learning software stack, platform architecture, and job management
between Philly and other deep learning platforms, it is possible
that some findings might not hold in other platforms or in other
companies. To mitigate this threat, in this study, we try not to draw
too specific conclusions that only pertain to Philly and Microsoft.
In Section 7, we discuss findings that could be generalized to other
platforms similar to Philly.

4 FAILURE CLASSIFICATION
In this section, we present the classification of 4960 job failures in
Full Sample Set. Table 1 summarizes the 20 failure categories, and
Figure 2 illustrates failure distribution across the 4 dimensions.

4.1 Dimension 1: Deep Learning Specific
13.5% of the total failures are deep learning specific and are divided
into 5 categories. Tensor Mismatch means that the shape or name
of a tensor does not match its expectation. There are usually three
cases: (1) Interconnected model layers have incompatible tensor
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Dimension Category Failure Description No. Ratio

Deep Learning
Specific

GPU Out of Memory Insufficient GPU memory to continue the DL com-
putation 434 8.8%

CPU Out of Memory Insufficient main memory 15 0.3%
Framework API Misuse API usage violates framework assumptions 138 2.8%

Tensor Mismatch Tensor shape or name does not match the expec-
tation 57 1.1%

Loss NaN Loss value is not a number 24 0.5%
Subtotal 668 13.5%

Execution
Environment

Path Not Found File or directory cannot be found 1954 39.4%

Library Not Found Python modules or dependent DLLs cannot be
found on the search path 309 6.2%

Permission Denied Insufficient permission to perform actions (e.g.,
installing Python packages into system folders) 116 2.3%

Subtotal 2379 48.0%

General Code
Error

Illegal Argument Argument does not satisfy program or function
requirement 722 14.6%

Type Mismatch Applying an operation or function to an object of
inappropriate type 566 11.4%

Key Not Found Accessing collection items with a non-existent key 154 3.1%
Null Reference Dereference on null value objects 92 1.9%

Attribute Not Found Referencing a non-existent Python class field,
function, etc. 81 1.6%

Syntax Error Violation of the grammatical rules 64 1.3%

Illegal Index Accessing array elements with an out-of-range or
non-integer index 64 1.3%

Undefined Variable Referencing a variable before its definition 59 1.2%
Not Implemented Functionality is not implemented yet 7 0.1%
Division by Zero Dividing a decimal value by zero 3 0.1%
Subtotal 1812 36.5%

Data
Corrupt Data Exceptional schema or contents in data 90 1.8%
Unexpected Encoding Data cannot be correctly encoded or decoded 11 0.2%
Subtotal 101 2.0%

Total 4960 100.0%

Table 1: Classification of 4960 job failures.

Figure 2: Distribution of 4960 job failures.

requirements; (2) Input data with unmatched shape is fed to amodel;
(3) A mismatched model file is restored to the constructed model.
GPU Out of Memory failures occur when the working set exceeds
GPUs’ available physical memory. It is the top category in this
dimension. Since GPU memory is relatively limited, developers
need to size the model very carefully. CPU Out of Memory failures

occur when a job runs out of the main memory (e.g., processing
large amounts of data). Loss NaN indicates that the calculated loss
value becomes undefined or unrepresentable (e.g., 0 × log 0).

The last category is Framework API Misuse, which means that a
framework API call violates the inherent assumptions. For example,
the TensorFlow API “session.run()” assumes that all the variables
should have been initialized properly. Otherwise, it throws an ex-
ception with the message “FailedPreconditionError: Attempting to
use uninitialized value”.

Finding 1: 13.5% of the total failures are deep learning specific.
Among the 5 categories, GPU Out of Memory is the largest one,
accounting for 65.0% of the failures in this dimension.

4.2 Dimension 2: Execution Environment
Execution environment related failures occur in the interactionwith
the platform rather than in the execution of code logic, accounting
for nearly half (48.0%) of the total failures. It is apparent that the job
execution environment provided by a platform is rather different
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to that for local development. For example, the required Python
modules (e.g., Fairseq [15]) or dependent DLLs (e.g., libcudnn.so)
may not have been pre-installed in the Docker container, then a
Library Not Found failure happens. Developers are allowed to make
in-place modifications to the job execution environment. However,
if they do not have sufficient permissions, such operations fail
and trigger Permission Denied failures. For example, a developer
executes “pip install fairseq” in the launching script for the required
Fairseq library. This command cannot succeed since root permission
is required. She needs to specify the “--user” option so as to install
the library into her home directory. The dominating category in
this dimension is Path Not Found (39.4%), which means that a non-
existent file or directory is accessed. For example, developers forget
to change the local file path in code before job submission.

Finding 2: Nearly half (48.0%) of the total failures occur in the
interaction with the platform rather than in the execution of
code logic. Among the 3 categories, Path Not Found is dominat-
ing, which accounts for 82.1% of the failures in this dimension.

4.3 Dimension 3: General Code Error
We find that 36.5% of the total failures are common and similar
to those in other computer programs. 14.6% are Illegal Argument
(argument not satisfying the requirement), and nearly half of them
occur while feeding arguments to Python code in the launching
script. There are also other categories such as Key Not Found (ac-
cessing collection items with a non-existent key), Attribute Not
Found (referencing a non-exist Python class field or function), Null
Reference, and Syntax Error (e.g., incorrect Python indentation). Be-
cause Python is a dynamic programming language, Type Mismatch
failures are rather common (11.4%). For example, concatenation of
a “PosixPath” object and a string using the “os.path.join” function
throws an exception with the message “TypeError: join() argument
must be str or bytes, not ‘PosixPath”’.

Finding 3: Failures in the General Code Error dimension ac-
count for a large percentage (36.5%) of the total failures. Illegal
Argument and Type Mismatch are the top two categories.

4.4 Dimension 4: Data
Failures in this dimension are related to unexpected data that can-
not be processed, possibly because of unsuccessful uploading or
misunderstanding of data properties. One of the two categories is
Corrupt Data, indicating that the data integrity is compromised. For
example, a JSON file which may be accidentally truncated loses
the value part in an attribute-value pair. The other is Unexpected
Encoding, which means that some data fields cannot be correctly
encoded or decoded. We notice a real program that uses the default
ASCII encoding to decode a string with some non-ASCII characters.

Finding 4: A number of deep learning jobs (2.0%) fail to handle
data errors such as corrupt data and unexpected data encoding.

5 ROOT CAUSES AND FIXES
We conducted root cause and fix analysis on Small Sample Set (400
failures) since it required a large amount of manual efforts to study
the source code/scripts. We also contacted the developers to seek
clarification when necessary. We have identified 5 common root

Figure 3: Distribution of failure categories (vertical) and
root causes (horizontal) across 400 job failures. The full
name of each root cause abbreviation can be found in the
titles of subsections in Section 5.

causes. Figure 3 illustrates the distribution of failure categories and
root causes across the 400 failures. In the following subsections,
we will describe the root causes in detail, and demonstrate some
real-world examples of failed programs and corresponding fixes.

5.1 Differences in Environment (DE)
Although Philly establishes a hermetic job execution environment
via Docker images of standard DL toolchain, 140 (35%) failures
in Small Sample Set are caused by the discrepancies between lo-
cal and platform execution environments, and account for 14.8%
GPU service time. Major differences include environment variables,
input/output paths, dependent software, versions of Python, frame-
works and toolkit libraries, etc. Another significant difference is
that processes of a DL job run in Docker containers under a new cre-
dential, therefore the granted permissions are very likely different
from those used on the local development machine.

Most of these failures are in the Execution Environment dimen-
sion. The fix of Path Not Found category is to parameterize file/folder
paths and obtain them from external arguments or configuration
files. In addition, developers should verify these paths as early as
possible because later failure occurrences (e.g., those in the model
evaluation stage) will waste a lot of resources. Library Not Found
and part of Permission Denied (installing Python packages into sys-
tem folders) failures can be solved by a custom Docker image with
all desired software pre-installed. Sampled Syntax Error failures are
due to the misuse of an early version of Python and can be also
solved in this way. In case that the dependent software is manually
installed during job initialization, developers should specify the
“--user” option to the pip command and install Python packages
into their home folders. The remaining Permission Denied failures
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are due to the insufficient permission in operating external files
and folders. The fix is to set up the correct access modes in advance
(e.g., executing “chmod” in the launching Shell script) and validate
them early in code.

Finding 5: Most failures in the Execution Environment dimen-
sion are caused by the environmental discrepancies between lo-
cal and platform. The many discrepancies (in installed software,
storage paths, granted permissions, etc.) make DL programs
error prone.
Implication:Developers are encouraged to use custom Docker
images with all desired software pre-installed, modify code to
be more environment-adaptive, and verify paths/permissions
as early as possible.

5.2 Inappropriate Model Parameters/Structures
(IPS)

All of the 43 (10.75%) Deep Learning Specific failures in Small Sample
Set are caused by inappropriate model parameters (e.g., learning
rate and batch size) or model structures (e.g., numbers of layers and
hidden units).

5.2.1 GPU Out of Memory. Most of the 39 failures are due to over-
large batch size and/or overcomplicated model. Figure 4 shows
an example. Larger batch size and more sophisticated model may
improve the model learning performance; however, they signifi-
cantly increase GPU memory consumption. At present, developers
largely rely on their domain knowledge to choose the optimal
model configuration, due to the lack of necessary tooling support.
For example, developers must use the memory-efficient 1×1 kernel
convolution [39] under certain circumstances.

Some on-going works are proposed to address Out of Memory
failures. For example, GPU memory consumption is statically es-
timated for certain computer vision tasks [34]. Another promis-
ing technique is GPU memory virtualization where data can be
automatically swapped in/out between host and GPU when nec-
essary [36, 44]. TensorFlow also has basic GPU memory swapping
mechanism (i.e., the “swap_memory” argument), which is enabled
in certain model layers (e.g., tf.nn.dynamic_rnn [4] ). Swapping
should be implemented efficiently, otherwise data latency will slow
down the computation.

Finding 6: GPU Out of Memory failures are mostly caused by
overlarge batch size and/or overcomplicated model.
Implication: Developers should proactively choose the opti-
mal model parameters and structures, taking into consideration
both available GPUmemory and expected learning performance.
Estimation and virtualization of GPU memory are two promis-
ing techniques.

5.2.2 Tensor Mismatch & Loss NaN. Although there are only 4 such
failures in Small Sample Set, they are very DL specific and deserve
more investigation.

One of the two Tensor Mismatch failures is caused by variable
name mismatch between the saved model file and the constructed
model. After communicating with the developer, its root cause was
identified to be the different variable naming rules between single-
GPU and multi-GPU in PyTorch. More specifically, the saved model

1 from keras.models import Sequential
2 from keras.layers import LSTM, Dense, Dropout
3
4 batch_size = 32 24
5 max_context_len = 400 200
6
7 # read dataset by batch using iterator
8 input_data = batch_iterator(batch_size, dataset, ...)
9
10 # model construction
11 model = Sequential()
12 model.add(LSTM(hidden_unit, input_length=max_context_len,...))
13 model.add(Dense(1, activation='relu'))
14 model.add(Dropout(0.5))
15 ...
16 train(model, input_data)

Figure 4: An example of GPU Out of Memory failure
caused by overlarge batches and overlong input sequences.
“batch_size” and “max_context_len” are arguments specified
in the configurationfile. The fix is to reduce both of themyet
keep themodel learning performance acceptable (lines 4-5).

1 import torch
2 import torch.nn as nn
3
4 input_channels = 3
5 out_channel = 64
6
7 class Discriminator(nn.Module):
8 def __init__(self, ...):
9 super(Discriminator, self).__init__()
10 self.main = nn.Sequential(
11 # input shape should be [batch_size, channel, height, width]
12 nn.Conv2d(input_channels, out_channel, ...),
13 ...
14 )
15
16 def forward(self, input):
17 return self.main(input)
18
19 # data is in [batch_size, height, width, channel] format
20 -indata = data.to(device)
21 +indata = data.permute([0, 3, 1, 2]).to(device)
22 netD = Discriminator(...).to(device)
23 result = netD(indata)

Figure 5: An example of Tensor Mismatch failure caused by
the wrong shape (line 19) of the initial input data. The fix
(line 21) is to permute data to the correct shape (line 11).

file is from a multi-GPU training job while the constructed model
is for single-GPU inference. The model restoration fails to match
these variable names. The fix is using matched variable names in
the constructed model or switching to multi-GPU inference. The
other failure is demonstrated in Figure 5 whose root cause comes
from shapemismatch between the initial input data and constructed
model. The fix is to permute data to the correct shape.

Loss NaN failures root in the stochastic nature of deep learning
algorithms. One of them occurs long after the training & validation
stage starts. We contacted the developer for help as it was rather
hard to discover the root cause. The developer told us that the
job was to fine-tune a pre-trained model. However, if such pre-
trained model has certain problematic parameters, the gradient
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may lead to a bad training situation and cause the loss to be NaN. A
quick fix is to try a new pre-trained model from the candidate set.
Another possible root cause is the overlarge learning rate, whose
fix is simply decreasing its value. The developer also suggested that
Loss NaN was sometimes due to exceptional data in the initial input
or the intermediate results. Filtering them out should solve the
problem. Loss NaN failures are non-deterministic and very difficult
to reproduce; therefore, the fix largely depends on the domain
knowledge.

5.3 API Misunderstanding (APIM)
19 (4.75%) failures are caused by misunderstanding of the com-
plex assumptions made by framework/library APIs. Figure 6 shows
a Framework API Misuse failure triggered by an incorrect API
argument value. The error message is “ValueError: Variable at-
tweights/kernel_weights_conv already exists, disallowed. Did you
mean to set reuse=True or reuse= tf.AUTO_REUSE in VarScope?”.
Since the TensorFlow variable “kernel_weights_conv” (line 25) is
shared among several GPUs (line 16, 19, 20), its parent scope (line
24) should be constructed with the parameter “reuse” explicitly set
to “tf.AUTO_REUSE”. However, the developer was unaware of this
assumption and forgot to set the “reuse” parameter. Therefore, a
default value was used, and TensorFlow runtime failed to create
the variable at the second time.

A few failures are caused by the evolution of internal APIs. The in-
terfaces between DL-related components are altered after software
upgrade, therefore breaking the internal compatibility. Developers
may think that their programs will still work since those changes
are invisible to them. Figure 7 demonstrates a failed Keras [12]
job with the error message “TypeError: softmax() got an unexpected
keyword argument ‘axis’ while using layers.Dense”. Execution logs
indicate that Keras 2.2.2 is installed in a TensorFlow 1.3 Docker
container. The developer may have thought that this latest version
of Keras would be compatible with TensorFlow 1.3. However, Keras
2.2.2 upgrades its Softmax implementation and requires TensorFlow
1.5 or higher. The fix is to downgrade Keras to a compatible ver-
sion with TensorFlow 1.3. Also, to manage complex dependencies
among the packages, DL platforms could provide a global package
manager and a dependency checker.

Finding 7: Developers may not fully understand the complex
assumptions made by framework/library APIs due to the rapid
evolution of DL-related software, which results in failures re-
lated to framework API misuse, illegal argument, etc. Such
internal compatibility issues are often invisible to the programs.
Implication: Developers need deeper understanding of frame-
work/library APIs. A custom Docker image could help mitigate
part of these failures.

5.4 Exceptional Data (ED)
In Small Sample Set, 24 (6%) failures are caused by the exceptional
data. Figure 8 illustrates such an example. The developer wants to
get the area under the ROC (receiver operating characteristic) curve
(i.e., AUC) in the model evaluation phase [14]. However, there is
only a single category existed in the “labels” variable (line 12), which
fails to satisfy the multiple-category requirement of calculating
AUC. Proactively writing exceptional-data-handling code could

1 config.encode_layer = 3
2 model = CustModel(config, ...)
3
4 class CustModel(BaseModel):
5 def __init__(self, config, **kwargs):
6 self.encode_layer = config.encode_layer
7 self.build_graph()
8
9 def build_graph(self):
10 with tf.device('/device:GPU:0'):
11 # define some variables on the first GPU
12 with tf.variable_scope('encoder'):
13 self.model_encoder()
14
15 def model_encoder(self):
16 gpu_id = 0
17 for i in range(self.encode_layer):
18 if i > 1:
19 gpu_id = 1
20 with tf.device('/device:GPU:%d'%(gpu_id)):
21 output = encoder_block(...)
22
23 def encoder_block(...):
24 + with tf.variable_scope('attweights', reuse=tf.AUTO_REUSE):
25 var1 = tf.get_variable('kernel_weights_conv', shape, dtype, ...)

Figure 6: An example of Framework API Misuse failure
caused by an incorrect API argument value. The fix is to set
the parameter “reuse” to “tf.AUTO_REUSE” explicitly (line
24).

1 x = layers.Dense(classes, activation='softmax')(x) # in user code
2
3 def softmax(x, axis=-1): # Softmax implementation in Keras
4 ...
5 return tf.nn.softmax(x, axis=axis)

(a) Softmax in Keras 2.2.2 requires TensorFlow 1.5 or higher.

1 def softmax(logits, axis=None, name=None, dim=None):

(b) TensorFlow 1.5

1 def softmax(logits, dim=-1, name=None):

(c) TensorFlow 1.3 has different parameters.

Figure 7: An example of Framework API Misuse failure
caused by framework evolution. Keras 2.2.2 ismistakenly in-
stalled with TensorFlow 1.3. The fix is to downgrade Keras
to a compatible version.

help avoid this type of failures. For example, the fault in Figure 8
can be fixed with “try-catch” to capture the thrown exception, thus
avoiding the calculation of AUC in erroneous scenarios.

DL developers could learn from the distributed data-parallel
programming practices: manual dataset cleaning before submis-
sion, defensive programming for exceptional data handling, and
input data sampling for local testing [25]. More sampling tools are
needed, which could help developers sample out representative
data to not only ensure the distribution, but also take some corner
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1 from sklearn.metrics import roc_auc_score
2
3 def creat_model():
4 wide = create_wide(...)
5 deep = create_wide(...)
6 model = combine(wide, deep)
7 return model
8
9 model = creat_model()
10 for i in range(args.stpes)
11 train(model)
12 # AUC for 2-category model
13 x_test, labels = read_from_file(...)
14 scores = model.predict(x_test)
15 + try:
16 auc = roc_auc_score(labels, scores)
17 logging.info('test ROC AUC score:' + str(auc))
18 + except ValueError:
19 + logging.info('fail to calculate ROC AUC score, may due to the

same category in labels')↪→

Figure 8: An example of Corrupt Data failure caused by the
unexpected data distribution of input data for AUC calcu-
lation (i.e., all values in “labels” are the same). The fix is to
catch the thrown exception (lines 15, 18-19).

cases into account for better testing locally. Ideally, the DL plat-
form should also provide data schema checker to ensure the data
correctness automatically before job execution, hence improving
user experience.

Finding 8: The exceptional data handling problem is important
for deep learning programming. DL developers could learn from
the distributed data-parallel programming practices to avoid
this problem.
Implication: The exceptional-data-handling code could be im-
proved. DL frameworks could provide dataset APIs to handle
this problem. A data validation procedure or tool could be used
to sample and check the validity of the data before a full-scale
training is conducted.

5.5 Common Programming Errors (CPE)
Nearly half (174; 43.5%) of the failures in Small Sample Set are
caused by common programming errors. Most of them (e.g., the
path concatenation example in Section 4.3) are easy to understand
and have quick fixes by referring to the error messages and failure
sites in code. However, a few failures are fairly complex and need
thorough examination of the code logic. Figure 9 presents a Key
Not Found failure of an NLP job. The original program is much
simplified to ease presentation. The exception is thrown at line 21
in the model evaluation stage; however, no clues are found here
or in the same function. After reading the complete source code,
we notice two hints at lines 1 and 6, which are far away from
the original failure site. It turns out that the developer mistakenly
disables beam search [42] at program entrance, while the failed code
needs beam search. The fix is to add a check for the “beam_width”
variable.

According to our observation, DL developers often use many
parameters/arguments in their code and scripts to control the exper-
iments. However, sometimes missing or inappropriate arguments

1 beam_width = 0 # original code reads it from a program argument
2
3 # generate nantural language output
4 def gen_text(bs_infer, ...):
5 n = bs_infer.shape[0]
6 hyps = dict((e, []) for e in range(beam_width + 1))
7 ...
8 # gereate text for beamsearch
9 for i in range(n):
10 for ii in range(beam_width):
11 hyps[ii + 1].append(get_natural(bs_infer[i, :, ii]))
12 return hyps
13
14 def infer_evaluate_save(data, ...):
15 for batch in data.batch_q_iter:
16 feed_dict = {inputs: batch}
17 results = model.infer(sess, feed_dict)
18 bs_infer = results['output']['bs_infer']
19 batch_hyps = gen_text(bs_infer, ...)
20 + if beam_width > 0:
21 bs_turn = dict(question=question, answer=batch_hyps[1][i])

Figure 9: An example of Key Not Found failure caused by
incorrect “beam_width” value. The fix is to add a check (line
20).

can violate the implicit assumptions in the code and lead to in-
compatible configurations. The failure symptoms include Illegal
Argument and Type Mismatch, which dominate the CPE accord-
ing to our statistics in Figure 3. A possible solution is to perform
formal code review or advanced static code analysis to detect the
programming errors earlier.

6 USER STUDY ON CURRENT TESTING AND
DEBUGGING PRACTICES

6.1 Study Design
To find out why failures of DL jobs happen and how they are
resolved, we need to better understand the current practices of
testing and debugging DL jobs. More specifically:

• Testing practices.Wewould like to knowwhether developers
test their programs locally in the same environment as Philly.
If not, what their current testing environment is. We would
also like to know the challenges developers face when testing
DL programs.

• Debugging practices. We would like to know how develop-
ers currently debug their failed jobs, how they detect non-
deterministic bugs resulted from the stochastic nature of
DL, what support they want from the debugging tools, and
whether a “Capture and Replay” tool is useful.

To answer the above questions, we conducted in-depth face-to-
face interviews with 6 representative developers of Microsoft. All
of the interviewees are algorithm engineers or researchers with 0.5
to 5 years of DL experience. They work on different products and
tasks that are related to gaming, computer vision, natural language
processing, speech, graphics, and advertisement. Table 2 shows the
interviewee demographics and their experience in DL. Note that
although only 6 developers are chosen, the cost of this study is
significant as each interview is one-on-one and lasts 1-3 hours.
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Id Field DL Exp.
(year)

U1 NLP 5
U2 RL for Gaming 3
U3 Object Detection 0.5
U4 Speech Generation 4
U5 Graphics 5
U6 Ad. Click-Through Rate 1.5

Table 2: Interviewee demographics and their experience.

6.2 Testing Practices
Since Philly does not offer a local simulator, one challenge is to
obtain a testing environment comparable to Philly (with the same
hardware and DL-related software). We first study how develop-
ers prepare DL testing from three aspects: hardware, development
environment, and input data. Four interviewees (U1, U2, U5, U6)
had a few GPUs on hand. However, such GPUs were much smaller
in memory and much slower in performance than those on Philly.
Considering the hardware limitation, all interviewees admitted re-
ducing the batch size, model complexity, and GPU count in local
testing. Regarding to the development environment, U3 said that
he took Philly as the testbed due to reasons such as lacking pow-
erful GPUs. This may explain the existence of some simple bugs
that could be solved before job submission. The others had their
own local workstations. They manually set up a native Python
DL environment by referring to the Docker images of standard
DL toolchain provided by Philly. In addition, they simulated envi-
ronment variables of Philly such as the input/output directories.
About input data examination, three people (U1, U4, U6) would use
a sampled smaller dataset for testing since the volume of original
input data was large. Except U3, they always placed data files on
their local machines.

The interviewees also told us a challenge about the test space
in DL testing. There are a large number of hyperparameter com-
binations to test due to the stochastic nature of DL. For example,
U2 used to submit a bunch of AutoML jobs to Philly [35]. However,
they could only afford testing a very small set of candidates.

Furthermore, the interviewees described a challenge about test-
ing at different DL phases. They usually focus more on the cor-
rectness of training pipeline (e.g., data reading, model construction
and serialization). Four interviewees (U2-U5) did not pay enough
attention to the model validation and evaluation phases. They may
stop testing after the first model checkpoint was saved successfully.
To further investigate failures in different DL phases, we divided the
execution of DL jobs into 4 phases and analyzed the failure occur-
rences of Small Sample Set, as shown in Figure 10. The number of
failures occurred at the “Initialization” phase accounts for 30.8% of
total failures, and they only consume 0.9% of total GPU service time.
The number of failures occurred at the “Model Evaluation” phase
accounts for 24% of total failures, but they consume 81% of total
GPU service time. These results show that many failures actually
happen in the model validation and evaluation phases, which could
have been thoroughly tested.

Figure 10: The number (left) and GPU service time (right)
distribution of 400 job failures at different execution phases.

Finding 9: The current DL testing practices are often insuffi-
cient due to the characteristics of deep learning. There are three
major challenges: (1) incomparable testing environment; (2)
large test space; (3) necessity of testing at different DL phases.
Implication:Developers are encouraged to test more cases and
all the DL phases. The local simulator of the platform, estimation
of GPU memory consumption, and test data generator could be
useful for DL testing.

6.3 Debugging Practices
We are also interested in how developers resolve failures. The six in-
terviewees use conventional code editors (e.g., Visual Studio Code)
and debugging methods (e.g., logging, breakpoints, and single step-
ping) for debugging DL programs. All of them adopt similar debug-
ging practices for failed jobs on Philly: they first examine the log
files, understand the problem context, and locate the fault in source
code/script. For evident bugs, they simply apply fix to code (e.g.,
correcting the object type), data (e.g., replacing with a cleansed
dataset), and experiment configurations. For the complex bugs,
they turn to more debugging methods (e.g., adding code to filter
out the exceptional data) and resolve them by leveraging domain
knowledge (e.g., reducing learning rate for Loss NaN ) or framework
documents (e.g., the example described in Figure 6). There are also
some DL specific tools to help debugging, such as TensorFlow de-
bugger [6] and TensorBoard [5, 45]. Developers could use such tools
to track the Inf/NaN value and locate the operator that generates it.
There are still some failures that are difficult to reproduce locally,
therefore developers had to debug them through a trial-and-error
process — submitting the modified programs to Philly repeatedly
and observing the results.

For GPU OOM, reducing the batch size is often developers’ first
solution to this problem, then followed by reducing the network
structure complexity. They also have some domain specific pa-
rameters such as the max sequence length in NLP and the image
resolution in graphics, which can all be used to reduce the model
complexity.

For Loss NaN, developers usually try to reproduce it by printing
the intermediate results and checking the calculations. This process
is usually without any debugging tool support and involves a lot of
time-consuming manual work.
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U1, U2, U3, and U4mentioned that they wanted a tool to visualize
the change of variable values, which they thought would be helpful
to debug and improve the model learning performance. All inter-
viewees think that it could be good to provide a replay mechanism,
which can capture some useful data in the computation process and
replay them when there is a failure. This would help locate bugs
that are related to the stochastic nature of DL and exceptional data.

Finding 10: The current DL debugging practices are not effi-
cient for fault localization in many cases. Existing debugging
tools may not work well due to the discrepancies between local
and platform execution environments, and the stochastic nature
of DL.
Implication: Developers need more DL specific debugging
tools. A good replay mechanism for saving the intermediate
results and restoring them at later re-run could be helpful for
debugging. A memory usage estimation tool could be comple-
mentary to current debugging methods.

7 DISCUSSION
7.1 Generality of Our Study
Although our study is conducted exclusively in Microsoft, we be-
lieve that our failure categories are prevalent andmost of our results
can be generalized to other DL platforms. The main reason is that
most deep learning programs executed on Philly use the common
programming paradigm (e.g., Python language, stochastic algo-
rithms, frameworks, and toolkit libraries) and target at common ap-
plications (e.g., image/video/speech recognition and NLP). Besides,
the hardware, system architecture, and job submission/execution
mechanism of Philly are widely adopted [9, 23, 47].

As an example, Findings 1 and 6 reveal GPU Out of Memory fail-
ures. It is well-known that DL models with sophisticated network
structures and large batch sizes may improve the model learn-
ing performance but also significantly increase memory consump-
tion [13, 18]. Therefore, we believe Findings 1 and 6 are general to
other platforms offering GPUs or even other AI accelerators like
TPUs.

As another example, Findings 2 and 5 are about environment-
related failures, which are not unusual to Philly jobs, even when
Philly establishes a hermetic job execution environment via Docker
images of standard DL toolchain. The underlying reason is that such
hermetic environment could not always be identical to the local
environment developers use. We believe these findings apply to
other platforms too as developers are also likely to make the same
mistakes. For instance, the troubleshooting webpage of Google
Cloud AI lists several similar environmental failures1.

7.2 Future Research Direction
Based on our study, we propose the following future research work:
Platform Improvement.

Avoiding Unnecessary Retries. Automatic retry is a common de-
sign in various platforms,mainly for recovery fromnon-deterministic
system failures. Developers can also leverage this mechanism for
non-deterministic deep learning specific failures (e.g., Loss NaN ).
However, if a failure roots in the DL program deterministically (e.g.,

1https://cloud.google.com/ml-engine/docs/troubleshooting

accessing a non-existent data folder), re-running the job multiple
times is apparently unnecessary and would simply waste resources.
The platform could design more-refined heuristics to infer whether
a failed job deserves retry and avoid the unnecessary ones.

Local Simulator. From Findings 2 and 5, we can see that unaware-
ness of the environmental differences results in nearly half of the
failures. Therefore, it is desirable to provide a platform simula-
tor for local development. The local simulator can behave like a
single-node implementation of the platform, which exports the
same environment variables, accesses the distributed storage, and
emulates one or more GPU devices.
Tool Support.

Estimation of GPU Memory Consumption. It is rather challenging
to debug and fixGPU Out of Memory failures. To choose good model
parameters/structures that satisfy memory consumption require-
ments, developers largely depend on their domain knowledge or
adopt a trial-and-error strategy (i.e., submitting several jobs with
different model configurations). An estimator can be developed to
infer the upper bound of GPU memory consumption based on fea-
tures such as current data distribution, model structure, and batch
size. A prediction model can be built by analyzing source code and
historical GPU Out of Memory failures. Such tools could help de-
velopers better estimate memory usage of their DL programs and
reduce Out of Memory failures.

Static Program Analysis. Static program analysis is a powerful
technique to detect code defects without actually running the pro-
grams. It will have great potential to proactively handle many kinds
of job failures including Framework API Misuse, Tensor Mismatch
and those in the General Code Error dimension etc. Performing
whole-program analysis across function calls can reduce the false
alarms.

Data Synthesis. Motivated by Finding 8, it is useful to develop
a data synthesis tool for testing the robustness of data process-
ing logic by extending symbolic execution techniques [24]. This
tool could generate special datasets conforming to the initial input
distribution to trigger potential bugs.
Framework Improvement.

Automatic GPU Memory Management. Although DL frameworks
hide most complexity of GPUs, developers still need manual GPU
memory management for data placement and consumption control.
Frameworks could provide an automatic GPUmemorymanagement
mechanism like what OSes have done to the main memory. For
example, cold data on GPU can be automatically swapped out [36,
44] to avoid GPU memory exhaustion. Another example is that the
mechanism could prefetch the input data and model partitions used
in the upcoming computations.

Replay. Debugging Loss NaN and other non-deterministic fail-
ures is challenging since it is hard to reproduce the same failing
execution. Frameworks could use existing replay techniques [20]
to record the precise execution sequence and interaction with the
environment. Hence when a developer wants to track down a fail-
ure, she can deterministically replay to the faulty state, which can
greatly facilitate fault diagnosis.

https://cloud.google.com/ml-engine/docs/troubleshooting


An Empirical Study on Program Failures of Deep Learning Jobs ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

8 RELATEDWORK
Machine learning / deep learning bugs. Thung et al. [40] and
Sun et al. [38] performed empirical analysis of bugs in machine
learning systems. Such system defects can also lead to job failures;
however, our study focuses on program/script bugs, which are
written by DL application developers. Zhang et al. [49] conducted
a research on GitHub and StackOverflow to study the TensorFlow
program bugs. Islam et al. [22] extended the work to cover more
DL frameworks. Some of the bugs they found (e.g., bugs due to API
evolution) are consistent with our observation. Our study analyzes
real-world industrial DL jobs with multiple DL frameworks (e.g.,
TensorFlow, PyTorch, and CNTK). We found many different types
of bugs occurred in a cloud-based DL platform, which could not be
easily discovered by the developers through local testing.
Empirical study. There are some empirical studies on the faults
of Big Data platforms and software systems [25, 46, 48, 50]. For
example, Xiao et al. [46] studied non-deterministic bugs in SQL-like
MapReduce programs. Li et al. [25] analyzed code/data defects in
distributed data-parallel programs. Zhou et al. [50] performed an
empirical study on service quality issues of a production Big Data
computing platform, which has a variety types of issues includ-
ing hardware failures and user errors. Zhang [48] analyzed the
distribution of faults in large-scale software systems. Our study
concentrates more on program failures of production deep learning
jobs.
Cluster infrastructure. Much research [19, 23, 33, 47] aims to
improve the GPU cluster utilization for deep learning by studying
the unique job characteristics. Jeon et al. [23] pioneered in the
understanding of lowGPU utilization of a multi-tenant cluster. Such
low utilization comes from gang scheduling [29], resource locality,
and job failures. Those job failures distribute across infrastructure,
DL framework, and user code. Apart from classifying the failure
symptoms, our work studies DL program failures and presents a
deep analysis of their root causes.
Testing. Recently, there is a large amount of work on testing DL
models. For example, DeepXplore [32] proposes a new metric to
measure the test coverage of a deep neural network. DeepTest [41]
further introduces a domain-specific automated testing tool to maxi-
mize the neuron coverage through realistic transformations over the
image data. TFX [8] builds a machine learning pipeline that eases
user efforts in deployment, which includes a set of system compo-
nents for data analysis, transformation, and validation. Therefore,
the platform can significantly reduce training failures and improve
model quality. Our work provides a systematic analysis of program
failures of DL jobs, which can help the community design better,
more practical testing and debugging toolkits for DL programming.

9 CONCLUSION
Like other computer programs, deep learning programs could also
fail to execute. In this paper, we describe the first empirical study on
program failures of deep learning jobs. We manually examine the
failure messages collected from 4960 failed jobs in Microsoft and
classify them into 20 categories. In addition, we identify the com-
mon root causes and bug-fix solutions on a sample of 400 failures.
To better understand the current testing and debugging practices
for deep learning programs, we also conduct developer interviews.

Based on our findings, we suggest possible research topics and tool
support that could facilitate deep learning training and testing. We
believe our work could help understand the quality issues of deep
learning programs and provide valuable guidelines for future deep
learning development.
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