
Integrating Software Engineering Data Using Semantic
Web Technologies

Yuan-Fang Li
Clayton School of IT
Monash University

Melbourne, Australia
yuanfang.li@monash.edu

Hongyu Zhang
School of Software
Tsinghua University

Beijing 100084, China
hongyu@tsinghua.edu.cn

ABSTRACT
A plethora of software engineering data have been produced
by different organizations and tools over time. These data
may come from different sources, and are often disparate
and distributed. The integration of these data may open
up the possibility of conducting systemic, holistic study of
software projects in ways previously unexplored. Seman-
tic Web technologies have been used successfully in a wide
array of domains such as health care and life sciences as a
platform for information integration and knowledge manage-
ment. The success is largely due to the open and extensible
nature of ontology languages as well as growing tool sup-
port. We believe that Semantic Web technologies represent
an ideal platform for the integration of software engineering
data in a semantic repository. By querying and analyzing
such a repository, researchers and practitioners can better
understand and control software engineering activities and
processes. In this paper, we describe how we apply Semantic
Web techniques to integrate object-oriented software engi-
neering data from different sources. We also show how the
integrated data can help us answer complex queries about
large-scale software projects through a case study on the
Eclipse system.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms
Design, Experimentation

Keywords
Software engineering data, Semantic Web, data integration

1. INTRODUCTION
Over the years of software practice, a plethora of struc-

tured or semi-structured software engineering data have been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’11, May 21-22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0574-7/11/05 ...$10.00.

produced by different organizations and tools. These data
include project information, source code, changes, bug re-
ports, metrics, etc. Many organizations are now maintain-
ing large software repositories and are willing to mine or
even share their software engineering data to facilitate the
exchange of results and to improve their current practices
by learning from others.

The construction of software repositories is further facili-
tated by the open-source software (OSS) movement, which
has gained momentum in the past decade. A significant and
growing number of open-source projects have been created,
resulting in increasing amount of software engineering data
from a variety of sources.

The large amount of heterogeneous software engineering
data brings both opportunities and challenges for researchers
and practitioners. On one hand, the abundance of software
engineering data enables people to extract useful informa-
tion from the data and to better manage software engineer-
ing activities. In fact, this is a vision of the mining software
repository (MSR) community. On the other hand, there is
a great variability in the software engineering data. These
data may come from different sources, for different purposes,
in different formats, language, etc. The data are often dis-
parate and distributed. Such disparity makes it difficult to
perform tasks such as mining and query. The integration of
these data may open up the possibility of conducting sys-
temic, holistic study of software projects in ways previously
unexplored.

After a decade of development, Semantic Web technolo-
gies have made tremendous progress with a stack of open
standards (such as RDF and OWL) and growing tool sup-
port. We believe that Semantic Web technique can provide
invaluable insight into the body of software engineering re-
search by translating these data into a single, coherent and
logical representation in RDF and making it publicly avail-
able. Moreover, such a knowledge source alleviates the cur-
rent data integration hurdles and help perform large-scale
empirical studies.

In this paper, we propose to build such an open, seman-
tic repository for open-source, object-oriented software. We
develop domain ontologies that cover the essential concepts
about software. Such ontologies will be used as the schema
for the integration of data from different sources into the se-
mantic repository. We also propose a general data integra-
tion approach and demonstrate how a semantic repository
can be constructed and used to answer complex queries.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’11, May 21–22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0574-7/11/05 ...$10.00

211

2. RELATED WORK
Over the years of software practice, a huge amount of

software engineering data has been accumulated. Recently
researchers began to explore methods for mining these repos-
itories (e.g., the MSR conference series) in order to extract
useful information that can be used to better understand
software engineering activities such as software maintenance
and evolution. However, collecting and integrating data
from various sources is a non-trivial task, which is often
done in an ad-hoc manner that can be very time consuming
and error-prone.

Many methods have been proposed to integrate software
engineering data. For example, CDIF (CASE Data Inter-
change Format) was proposed as an industrial standard for
exchanging information about software models and code in
plain text [1]. XMI (XML Metadata Interchange) is an
OMG standard for exchanging information including UML
models in XML format. FAMIX (FAMOOS Information Ex-
change Model [2]) developed in the FAMOOS project at the
University of Berne supports the exchange of software engi-
neering data based on CDIF and XMI. FAMIX provides an
intermediate representation of object-oriented entities (such
as class, method, and attribute) and relations (such as in-
heritance and access). It can be used as a portable format
among a variety of tools. However, the CDIF standard that
FAMIX is based on lacks support from both industrial and
research communities, and the XMI format is too verbose
for human to read. These limitations make FAMIX less ex-
tensible. Also, there is a lack of methods and tools that can
support integration and queries over the FAMIX data.

The Graph Exchange Language (GXL) [3] is also designed
to exchange software representations among various reverse
engineering tools. GXL represents software as a graph-based
abstraction and then uses XML to encode the graph. Being
based on a non-standard representation format, the exten-
sibility of GXL is also limited.

Kim et al. proposed TA-RE as an exchange language for
mining software repositories [5]. It is envisioned that TA-RE
can support the representation and integration of software
change, transaction and project data mined from SCM (soft-
ware configuration management) systems. However, to our
best knowledge, the goal of TA-RE has not been realized.

Recently researchers started to apply Semantic Web tech-
niques to software engineering data. A number of ontolo-
gies and vocabularies have been defined in the software en-
gineering domain. The Bug And Enhancement Tracking
LanguagE (Baetle) ontology1 covers bug-related informa-
tion in defect databases such as Bugzilla and Jira. The
Project Vocabulary2 and Description of a Project (DOAP)
ontology3 both define vocabularies to describe (software)
projects. In [6], Witte et al. proposed an ontology-based ap-
proach to software maintenance analysis, through the inte-
gration of source code and documentation using ontologies.
Kiefer et al. defined a software evolution ontology (EvoOnt)
and performed analysis on software change between versions
and code smell detection [4]. In [7], the authors also chose
to use ontology to facilitate software maintenance.

In this paper, we propose ontologies for modeling object-
oriented systems and present our Semantic Web based meth-

1http://code.google.com/p/baetle/.
2http://hyperdata.org/xmlns/project/.
3http://trac.usefulinc.com/doap.

ods for the representation, integration and query of data
associated with such systems.

3. INTEGRATION OF SOFTWARE ENGI-
NEERING DATA

There are a large amount of open data available for open-
source software projects. These data represent an invalu-
able information source for software engineering research.
However, these data are usually stored in individual silos
and cannot be easily integrated. A main reason is that
these datasets are usually collected from different sources
and saved in different formats. In other words, the lack of
an open, commonly-agreed schema greatly hinders the inte-
gration of software engineering data.

Figure 1 gives an overview our Semantic Web based ap-
proach to software engineering data integration. The major
steps are as follows:

Integration

Collection
&

translation

Dependency

...

Bug data

Metrics

Program
structure

Intermediate
Data Store

Software
Ontology

RDF Triple
Store

Querying,
mining,

analysis, ...

Figure 1: The high-level processing steps for the
integration of software engineering data.

Ontology definition. An ontology serves as an open se-
mantic model that defines concepts and attributes for and
relationships among these concepts in a domain. Any se-
mantics enabled knowledge representation and information
integration approach must define one or more core domain
ontologies. The software engineering domain contains a large
number of concepts and relations and it is impractical to
represent them all in one ontology. In our work, we take a
modular approach and define more closely-related concepts
in one ontology. Modularity also simplifies ontology mainte-
nance and improves ontology reuse. The resultant ontology
can be easily used/reused through the import mechanism
defined in OWL.
Data collection & translation. A number of parsers
read input files from different sources and translate them
into the data structure defined by ontologies. Each software
project is treated as an independent entity. Hence, a soft-
ware project is contained in an RDF named graph (a set
of RDF triples identified by a URI, Uniform Resource Iden-
tifier). This practice gives scopes to software projects and
makes maintenance of RDF data of individual projects easy.
Data integration. We use an RDF generator that tra-
verses the above data structure and generates RDF triples
and deposits them into the RDF triple store of choice. Much
like a database, an RDF triple store stores RDF graphs,
which are sets of RDF triples, in persistent storage. Unlike

212

databases, RDF triple stores do not require or enforce pre-
defined schemas for RDF graphs. However, if an RDF graph
specify some OWL or RDFS ontology as its model, the triple
store is able to take advantage of the definitions in the ontol-
ogy during query answering. A number of high-performance
triple stores are capable of storing large amounts of RDF
triples efficiently. In this paper, we use the Sesame triple
store4 but the choice is irrelevant to the overall approach.

Note that the open nature of Semantic Web based ap-
proach facilitates extensibility and data integration. In data-
base and SQL based approaches, database schemas must be
defined upfront and they remain relatively stable through-
out the life of the application. Schema change usually im-
plies data migration, which can be a tedious and error-prone
process. Moreover, new information cannot be easily added
as it usually involves modification of existing schemas. On
the other hand, RDF-based approaches such as the one pre-
sented in this work does not mandate the use of a schema
(ontologies). The absence of the compulsory link between
RDF data and ontologies makes it easy to add new infor-
mation. In addition, ontologies, which define domain con-
cepts and their relations, can be overlaid on top of the RDF
triple store to provide extra reasoning capabilities for anal-
ysis tasks.

4. A CASE STUDY ON ECLIPSE DATA IN-
TEGRATION & QUERY

To illustrate our approach, in this section, we present our
work on integrating some of the software engineering data
from the Eclipse system. Eclipse is a widely-used open-
source software development environment. We have col-
lected real data of the Eclipse 3.0 project, which is a large-
scale project containing more than 10,000 files and 1,300K
lines of code. We demonstrate the integration of three dif-
ferent but related data sets: object-oriented language data,
program dependency data and software metrics data. Note
that although in this paper we only describe three forms
of software engineering data, new information can be easily
added and integrated.

4.1 Ontology Definitions & Data Collection
We first define ontologies for modeling object-oriented lan-

guage data, program dependency data and metrics data5.

Object-oriented language data
Object-oriented languages have many unique concepts such
as class and inheritance. Without loss of generality, we will
focus the discussion on the Java language as it is widely
used and there is an abundance of open-source Java software
available. We model the object-oriented language elements
(such as classes, interfaces, methods, attributes, visibility,
inheritance, etc) as OWL classes, predicates and restrictions.

We use MOOSE to collect object-oriented language data.
MOOSE is a platform that supports reverse engineering and
software visualization. MOOSE uses a language indepen-
dent meta-model FAMIX [2] as its internal representation,
and exports data in a generic exchange format called MSE.

Program dependency data
As software systems become more and more modularized,
dependency modeling becomes important as it is the foun-
4http://www.openrdf.org/.
5The full ontology is available at http://csse.monash.edu.
au/~yli/OOModel/.

dation for tasks such as program understanding and change-
impact analysis. Dependency means that the functioning of
one element requires the presence of other elements. We de-
fine two OWL classes, Dependable and Dependent and OWL
predicates as abstract concepts to represent dependency-
related entities such as classes, methods, invocations and
return types.

We extract program dependency data produced by the
Dependency Finder tool, which operates on Java bytecode
and extracts dependency graphs. It organizes information
in a hierarchical way, records the inter-dependencies among
package, class, feature (e.g., method, attribute), and outputs
the data in XML format.

Software metric data
Software metrics are an important means for measuring the
complexity and quality of a software system. Essentially,
each metric has a name, value and associated scale. We
define a Metric class in OWL and a number of properties
to represent its attributes.

We collect complexity metrics data produced by the Un-
derstand for Java tool. These data includes object-oriented
metric data (such as WMC, DIT, etc.) as well as program
complexity data (such as lines of code, cyclomatic complex-
ity metrics, etc.). The tool outputs the metric data for each
class in comma-delimited plain text format.

4.2 Data Integration
Having collected the above data about Eclipse 3.0, we de-

veloped a program to automatically convert different datasets
into RDF triples and store them in a native (on-disk, per-
sistent) Sesame triple store. Table 1 shows brief statistics of
the data collected. In total, more than eight million RDF
triples were generated.

Table 1: Statistics of Integrated Data for Eclipse 3.0
Type Number
Package 1,090
Class 16,983
Method 146,356
Constructor 10,482
Attribute 54,167
Formal parameter 111,866
Local variable 27,071
Containment 584,835
Inheritance 139,921
Method invocation 314,154
Dependency 401,367
Metrics 2,119,680
RDF triples 8,762,073

4.3 Querying the Semantic Repository
Data integration is only the first step in the systemic un-

derstanding and analysis of software systems. Having the
RDF data available, SPARQL queries6 can be issued over
the integrated dataset to help us better understand the sys-
tem. Syntactically similar to SQL, SPARQL provides a
number of ways to specify constraints on query variables
(such as basic triple patterns, logical operations, optional
pattern matching, constraints on data values, etc.) to query
information in RDF triple stores.

In this section, we use the Eclipse RDF dataset integrated
in the previous section to demonstrate the kinds of queries
that can be answered through SPARQL. The prefixes rdf,

6http://www.w3.org/TR/rdf-sparql-query/

213

oom and dii each represent a different naemspace: rdf repre-
sents the namespace for the RDF vocabulary, oom represents
the ontology we defined previously and dii represents the
namespace of the instance RDF data in the triple store.
Query 1. Find all classes that use the public attribute x

defined in class org.eclipse.swt.graphics.Point.

SELECT DISTINCT ?class
WHERE {

?method rdf:type oom:Method .
?method oom:hasDependable

dii:org.eclipse.swt.graphics.Point.x .
?class oom:contains ?method .
?class rdf:type oom:Class .

}

This simple query finds all classes that have a method that
uses the specified variable x defined in class org.eclipse.swt.
graphics.Point. As it turns out, only the class org.eclipse.
swt.tools.internal.JNIGeneratorAppUI uses this variable.
Such type of query can help program understanding and
maintenance activities.
Query 2. Find subclasses of org.eclipse.jdt.internal.
compiler.ASTVisitor that will be affected if method tra-

verse() in class org.eclipse.jdt.internal.compiler.ast.
ASTNode is changed.

SELECT DISTINCT ?class
WHERE {

dii:org.eclipse.jdt.internal.compiler.ASTVisitor
oom:hasSubclass ?class .

?class oom:contains ?method .
?method oom:hasDependable ?method1 .
filter (regex(str(?method1),

"org.eclipse.jdt.internal.compiler.ast.ASTNode.\
traverse%28*")) .

}

This query requires the program structure data as well as
the dependency data. By utilizing the integrated semantic
repository, four classes are returned: three of them are in the
package org.eclipse.jdt.internal.formatter and one in
the package org.eclipse.jdt.internal.codeassist.

complete. As shown here, the query points to the exact
candidates that will be affected by the proposed change.
Query 3. Find the top 10 Eclipse 3.0 classes that are larger
than 500 LOC (lines of code) and have WMC (weighted
methods per class) larger than 10, ordered by descending
LOC value.

SELECT DISTINCT ?class ?v ?v1
WHERE {

?class rdf:type oom:Class .
?class oom:hasMetric ?m . ?m oom:hasName "LOC" .
?m oom:hasValue ?v . FILTER (?v > 500)
?class oom:hasMetric ?n . ?n oom:hasName "WMC" .
?n oom:hasValue ?v1 . FILTER (?v1 > 10)

}
ORDER BY DESC (?v)
LIMIT 10

This query makes use of two similar blocks of filtering
expressions to express constraints on the metric names and
values. The query returns the top 10 classes with the largest
LOC values (which are also larger than 500) and WMC
larger than 10. The results show that these complex classes
are mostly from the packages org.eclipse.swt and org.

eclipse.jdt.internal. This type of queries helps identify
problematic code and potential candidates for refactoring.

The above queries demonstrate the benefits of the inte-
gration approach we propose. By constructing an integrated
dataset that includes a large amount of data about different
facets of a software project, sophisticated queries can be for-
mulated to help analyze the system under study. Although
the query examples given above can be also achieved using
conventional database and SQL based methods, semantic
web based approach is more flexible to changes/additions in
data schemas. As the integration approach is designed to be
extensible, more types of data can be added with ease. As
a result, the repository becomes an increasingly important
information source for analysis as more data is deposited.

5. CONCLUSION
A huge amount of software engineering data have been

accumulated over the years of software engineering practice.
These data are often from different sources, in different for-
mats and of different focus. Effective representation and in-
tegration of these data can pave the way for more powerful
analysis, mining and reasoning.

Semantic Web technologies have been successfully applied
in a number of domains to provide a solution to data inte-
gration and knowledge management challenges. We believe
large-scale integration of software engineering data can pro-
vide opportunities for sophisticated analyses both within a
single project and across projects. In this paper, we propose
to apply Semantic Web techniques to representing and inte-
grating software engineering data. Such an approach is, we
believe, extensible, flexible and scalable.

Clearly the data integration and query examples described
in this paper only involve a small number of data types. In
future, we will perform a large-scale evaluation of the pro-
posed Semantic Web based approach, over a variety of soft-
ware engineering data (such as defects, changes, developers,
etc) across multiple projects.

Acknowledgement
This research is supported by the NSFC grant 61073006 and
the Tsinghua research project 2010THZ0.

6. REFERENCES
[1] CDIF Technical Committee. CDIF framework for

modeling and extensibility. Technical Report
EIA/IS-107, Electronic Industries Association,1994.

[2] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 -
the FAMOOS Information Exchange Model. Technical
report, University of Bern, 2001.

[3] R. C. Holt and A. Winter. A Short Introduction to the
GXL Software Exchange Format. In WCRE ’00, pages
299-301, 2000.

[4] C. Kiefer, A. Bernstein, and J. Tappolet. Mining
software repositories with iSPARQL and a software
evolution ontology. In MSR ’07, 2007.

[5] S. Kim, T. Zimmermann, M. Kim, A. Hassan,
A. Mockus, T. Girba, M. Pinzger, E. J. Whitehead, Jr.,
and A. Zeller. TA-RE: an exchange language for mining
software repositories. In MSR ’06, pages 22–25, 2006.

[6] R. Witte, Y. Zhang, and J. Rilling. Empowering
Software Maintainers with Semantic Web Technologies.
In ESWC’07, pages 37–52, 2007. Springer-Verlag.

[7] D. Hyland-Wood, D. Carrington and S. Kaplan, A
Semantic Web Approach to Software Maintenance. In
EKAW’06 , poster, 2006.

214

