

XVCL: A Tutorial
Soe Myat Swe, Hongyu Zhang and Stan Jarzabek

Department of Computer Science, School of Computing
National University of Singapore

Singapore 117543
{soemyats, zhanghy, stan}@comp.nus.edu.sg

ABSTRACT
XVCL (XML-based Variant Configuration Language) is a
general-purpose mark-up language for configuring variants in
programs and other types of documents. We can apply XVCL to
configure variants in a variety of software assets such as software
architecture, program code, test cases, technical and user-level
program documentation or requirement specifications. The
principles of the XVCL have been thoroughly tested in practice.
XVCL is based on the same concepts as the frame technology [1].
Frame technology has been extensively applied in industry to
manage variants and evolve multi-million-line, COBOL-based,
information systems. An independent analysis showed that frame
technology has reduced large software project costs by over 84%
and their times-to-market by 70%, when compared to industry
norms [1, 2]. At the same time, we found that the principles of
XVCL are not easy to communicate. In this paper, we describe a
subset of XVCL. We trust this subset of XVCL is easy to
understand and still effectively communicates essential XVCL
concepts. To illustrate the XVCL method, we further describe an
XVCL solution to handling variants in a Notepad system.

Categories and Subject Descriptors
D.2.13 [Reusable Software]: Domain Engineering

General Terms
Design, Experimentation, Languages

Keywords
XVCL, Frame Technology, Product Line

1 INTRODUCTION
XVCL (XML-based Variant Configuration Language) is a
general-purpose mark-up language for configuring variants in
programs and other types of documents. We can apply XVCL to
configure variants in a variety of software assets such as software
architecture, program code, test cases, technical and user-level
program documentation or requirement specifications. In fact,
XVCL can be used for managing variants in any domain that can

be represented as a collection of textual documents.

Variants arise naturally in software reuse and evolution, in
particular, if you deal with software product lines that encompass
a family of similar systems. This is exactly the context in which
we have developed and applied XVCL. Suppose you have a
software product that you want to run on different platforms or
hardware devices. Or you deliver versions of the same product to
a number of customers and these product versions differ in some
functional or non-functional requirements. XVCL allows you to
configure product variants from the common core of generic,
adaptable and reusable software assets. With XVCL, you can
reduce the cost of developing and evolving product lines.

However, XVCL is more than a language for configuring variants.
It is accompanied by a methodology and supported by a tool – an
XVCL processor. The XVCL methodology tells you how to
discover the variant-structure of the solution for your application
domain and for the types of variants you want to address. The
XVCL processor automates what are often the most error-prone
parts of program construction, allowing you to entirely focus on
the essential novelty of your problems, work requiring your
creativity.

Whether you develop software, manage data, design production
processes, or carry out information-intensive research, themes
recur with variations. Programmers, for example, commonly
create new programs by modifying existing copies. A
manufacturer produces multiple models of a product line, each
specified by a bill-of-material that differs marginally from the
other bills. A business captures customer and supplier data in
forms that resemble each other. The problem is that the details that
make each program, bill-of-materials or data record unique get
lost, hidden within large amounts of otherwise redundant
information. XVCL allows you to understand the structure of an
information domain in terms of its similarities and differences by
providing a means of configuring (i.e., structuring) the variations
so that all instances can be automatically (re)constructed from
their underlying themes. XVCL is independent of any specific
programming language or application domain and can be useful in
both software and non-software domains.

XVCL is a scripting language that allows you to specify how to
systematically and reliably modify programs at variation points in
order to accommodate specific variants into programs. You use
XVCL commands to mark variation points in your program. To
facilitate effective reuse, you split your program into generic,
adaptable fragments, called x-frames. Each x-frame is
instrumented with XVCL commands to permit automatic
customization and evolution. You organize x-frames into a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy,
otherwise, or republish, to post on servers or to redistribte to lists,
requires prior specific permission and/or a fee.
SEKE '02 , July 15-19, 2002, Ischia, Italy.
Copyright 2002 ACM 1-58113-556-4/02/0700...$5.00.

- SEKE '02 - 341 -

hierarchy that forms an adaptable architecture for your product
line.

The XVCL processor traverses an x-frame hierarchy and performs
adaptation by executing XVCL commands embedded in x-frames.
During processing, each x-frame, in effect, adapts the x-frames of
its (sub) hierarchy to produce a specific system, a member of the
product line. XVCL processor assembles customized x-frames
into a program that meets specific variants.

The principles of the XVCL have been thoroughly tested in
practice. XVCL is based on the same concepts as the frame
technology [1]. Frame technology has been extensively applied in
industry to manage variants and evolve multi-million-line,
COBOL-based, information systems. While designing a frame
architecture is not trivial, subsequent complexity reductions and
productivity gains are substantial. An independent analysis
showed that frame technology has reduced large software project
costs by over 84% and their times-to-market by 70%, when
compared to industry norms [1, 2]. These gains are due to the
flexibility of the resulting architectures and their evolvability over
time. The excellent record of frame technology in large-scale
software applications was the main reason which led us to
implementing XVCL [8].

XVCL is extensible and, of course, free of COBOL heritage. We
applied XVCL to handle variants and evolve component-based
systems written in Java [6, 3] and to manage variants in UML
software models documenting product lines in Facility
Reservation and Computer Aided Dispatch system domains [7].
Skillfully structured XVCL solutions collapse the size of the
problem so that typically you need to focus on only the 5%-15%
of the program solution that is unique; the other 85%-95% is
constructed automatically.

XVCL facilitates change. For example, modifying programs is
tedious and notoriously error-prone. XVCL not only greatly
speeds up the modification process, but also performs all changes
in a much more reliable manner – it never gets sloppy or forgets to
make an intended change. XVCL helps you reuse information and
control its evolution over time.

Despite effectiveness of XVCL in solving practical problems, the
principles of XVCL are not easy to communicate. In this paper,
we describe a subset of XVCL, which is easy to understand and
still effectively communicates essential XVCL concepts. To
illustrate the XVCL method, we further describe an XVCL
solution to handling variants in Notepad systems. Finally, we
compare XVCL with other methods for handling variants in
product lines.

2 SALIENT FEATURES OF XVCL
2.1 XVCL Fundamentals
In XVCL, generic, adaptable components are called x-frames. An
x-framework is a collection of inter-related x-frames that we reuse
in the construction of programs or product lines. The x-frames in
an x-framework may be linked together by XVCL <adapt>
commands (explained in section 2.2), provided no <adapt> chains
loop back on themselves. X-frameworks are more general than
trees, but as in a tree, every x-subframework will have a unique x-
frame as its root.

An x-frame is an XML file with program code instrumented with
XVCL commands for ease of customization. X-frames in our
examples will contain Java code. XVCL commands must follow
the rules of the XVCL language to be processed by the XVCL
processor. XVCL is based on XML1 so the usual XML rules apply
to XVCL. An x-frame is valid if it conforms to the rules specified
in its corresponding Document Type Definition (DTD). The DTD
defines the XVCL grammar that specify valid XVCL commands,
their corresponding attributes and nesting structures.

XVCL is supported by a processor. Before processing x-frames,
the processor checks if x-frames conform to the grammar
definitions in the DTD. If they do, the processor traverses x-
framework, interprets XVCL commands embedded in visited x-
frames and assembles the output (e.g., a custom program) into one
or more files. In our example, the output is emitted to a single file.
The processor's traversal order is dictated by <adapt> commands
embedded in x-frames. This customization process of the x-
framework is directed by instructions contained in a specification
x-frame, called an SPC for short. (Each SPC specifies a different
customization of an x-framework.)

Figure 1. An example of an x-framework and SPC

We shall now illustrate the customization process. In the example
of Figure 1, x-frames A (an SPC), B, C, D, E and F form an x-
framework rooted at x-frame A, in which:

• x-frame A adapts x-frames B and C,

• x-frame B adapts D and E,

• x-frame C adapts E and F.

X-frames B and C are roots of their respective x-subframeworks.

The <adapt> command tells the processor to customize the
specified x-frame and assemble the customized result into the
output. Figure 2 shows the traversal path of the XVCL processor
for the example shown in Figure 1. The custom result is shown on
the right hand side of the Figure 2.

1 For more information on XML please refer to
“www.w3c.org/TR/REC-xml”

- SEKE '02 - 342 -

What we did not show in the above example, is that <adapt>
command may also specify customization commands. In such a
case, part of the output will be a customized version of the
<adapt>ed x-frame. We shall discuss this in more detail below.

Figure 2. Example of x-frame processing

2.2 Description of Essential XVCL
Commands

We shall now describe a subset of XVCL. The reader can find full
specification of XVCL at our Web site:
www.comp.nus.edu.sg/labs/software/xvcl.html

Syntax Attribute
Definition

Command Definition

<x-frame name=
”name” >

x-frame body:
mixture of code
and XVCL
commands

</x-frame>

name: is the
name of the x-
frame being
defined.

The <x-frame> command
denotes the start and end
of the x-frame body. The
x-frame body contains
textual contents (e.g.,
program code),
instrumented with XVCL
commands for ease of
adaptation.

<adapt
x-frame=”name”>
 adapt-body :
mixture of <insert>,
<insert-before>,
<insert-after>
commands
</adapt>

or:
<adapt
x-frame=”name”/>

x-frame:
defines the
name of x-
frame to be
adapted.

The <adapt> command
instructs the processor to:
• adapt the x-
subframework rooted in
the named x-frame by
inserting text contained in
<insert> commands at
specific breakpoints of
<adapt>ed x-frames,
• emit/assemble the
customized content of the
adapted x-subframework
into the output,
• resume processing of
the current x-frame after
processing the x-
subframework rooted in
the named x-frame.
The adapt-body may

contain a mixture of
<insert>, <insert-before>
and <insert-after>
commands.

<break name
=”break-name”>
break-body
</break>

or:
<break name
=”break-name”/>

name: defines
the name of
breakpoint in
an x-frame.

The <break> command
marks a breakpoint at
which changes can be
made by ancestor x-
frames via <insert>,
<insert-before> and
<insert-after> commands.
The break-body defines
the default code, if any,
that may be replaced by
<insert> or extended by
<insert-before> and
<insert-after> commands.

<insert break =
”break-name”>
 insert-body
</insert>

<insert-before
break = ”break-
name”>
 insert-body
</insert-before >

<insert-after
break=”break-
name”>
 insert-body
</insert-after >

break: defines
the name of
the breakpoint.

The <insert> command
replaces the breakpoints
“break-name” in the
adapted x-subframework
with the insert-body.

The <insert-before>
command inserts the
insert-body before the
breakpoints “break-name”
in the adapted x-
subframework.

The <insert-after>
command inserts the
insert-body after the
breakpoints “break-name”
in the adapted x-
subframework.

The insert-body may
contain a mixture of
textual content and XVCL
commands.

<set var = ”var-
name” value =
”value” />

var: defines
the name of
single-value
variable.

value: defines
the value to be
assigned.

The <set> command
assigns a “value” defined
in “value” attribute to
single-value variable “var-
name” defined in “var”
attribute.

<set-multi
var=”var-name”
value=”value1,
value2, …” />

var: defines
the name of
multi-value
variable.

value: defines
a list of values
to be assigned
to the variable.

The <set-multi> command
assigns multiple values
(value1, value2,…)
defined in “value”
attribute to a multi-value
variable “var-name”
defined in “var” attribute.

<value-of expr =
”expression” />

expr: defines
an expression
to be

The value of the
“expression” is evaluated
and the result replaces the

- SEKE '02 - 343 -

evaluated. <value-of> command.

<select option =
”var-name”>
 select-body: may
contain options
listed below
</select>

select-body:
 <option-
undefined>
(optional)
 option-body
 </option-
undefined>

 <option value =
”value”> (0 or
more)
 option-body
 </option>

 <otherwise>
(optional)
 option-body
 </otherwise>

option: The
“option”
attribute in
<select>
command
defines the
variable whose
value will be
matched in
<option>
commands.

value: The
“value”
attribute in
<option>
command
defines the
value to be
matched.

In this command, we
select from a set of
options based on variable
“var-name” as follows:

• <option-undefined>
is processed, if the
variable “var-name” is
undefined,

• <option> is
processed, if value of
“var-name” matches
<option>’s “value”,

• <otherwise> is
processed, if none of the
<option>’s “value” is
matched.

The option-body may
contain a mixture of
textual content and XVCL
commands.

<while using-
items-in=”multi-
var”>
 while-body
</while>

using-items-
in: defines the
multi-value
variable
“multi-var” to
be used inside
while.

The <while> command
iterates over the while-
body using the values of
multi-value variable
“multi-var” defined in
“using-items-in” attribute.
The i’th iteration uses i’th
value of the “multi-var”.
Inside while-body, multi-
var with the i’th value can
be used as single-value
variable. The while-body
may contain a mixture of
textual content and XVCL
commands.

<!-- comment --> Text enclosed between
<!-- --> is considered a
comment. Comments may
spread over multiple lines.

Table 1. Essential XVCL commands

2.3 XVCL Expressions and Variable Scoping
Rules

Generic names increase flexibility and adaptability of programs
and play an important role in building generic, reusable programs.
XVCL variables and expressions provide powerful means for
creating generic names and controlling the x-framework
customization process.

An XVCL expression may involve direct and indirect references
to XVCL variables, name expressions and concatenation of name
expression values with strings of characters.

2.3.1 References to variables
A direct reference to variable C is written as: @C.

Each extra symbol ‘@’ in the front of a variable name indicates a
level of indirection. So:

@@C means value-of (value-of (C))

@@@C means value-of (value-of (value-of (C))), etc.

Variable references are replaced by their respective values. Here,
we should mention, that XVCL processor stores all the existing
variables in the Symbol Table along with their current values, as
assigned to variables in <set> commands. A reference to a non-
existing variable is considered an error.

For example, referring to Symbol Table (Table 2), the value of
@@C is BU and the value of @@@C is V.

2.3.2 XVCL expressions
We shall introduce name expressions first and then explain
expressions in their full form. A simple name expression may
contain just a variable reference, such as: ?@C? or ?@@C?. (A
name expression is always enclosed between question mark
symbols ‘?’.)

More complex (but more useful) name expressions can be written
as: ?@A@B@C?. The value of such a name expression is
computed from right to left as follows:

value-of (“A” | value-of (“B” | value-of (C))), where
symbol ‘|’ means string concatenation.

After each evaluation step, the intermediate value computed is
concatenated with the character string on the left to form a new
variable name that is looked up in the Symbol Table. Evaluation
of a name expression continues until the whole name expression is
evaluated. A name expression may contain a mixture of indirect
references and direct references to variables and any number of
concatenations.

In a valid name expression, the rightmost string and also strings
created at each intermediate evaluation step must represent
variables that exist in the Symbol Table. All such variables must
have been defined in <set> commands before a given name
expression is evaluated.

The following example illustrates evaluation of name expressions.
Suppose when we evaluate name expression: ?@A@B@C?, the
Symbol Table contains variables shown in Table 2.

Variable Name Value

A X

X Y

Y Z

C U

U BU

BU V

AV W

Table 2. The Symbol Table with XVCL variables

- SEKE '02 - 344 -

The evaluation of a name expression ?@A@B@C? is done as
follows:

1. get the value of variable C

• the intermediate result is U

2. concatenate B and U and get the value of variable BU

• the intermediate result is V

3. concatenate A and V and get the value of variable AV

• the final result is W.

XVCL expressions in their full form may contain any number of
name expressions intermixed with character strings. To evaluate
an expression, we evaluate all the name expressions and
concatenate resulting values with character strings. The result
replaces the corresponding expression.

As an example, we shall evaluate an expression:
?@A@B@C?P?@X? assuming variable values indicated in Table
2:

1. evaluate name expression ?@A@B@C?

• the result is W
2. replace ?@A@B@C? with W

• partially evaluated string becomes WP?@X?
3. evaluate name expression ?@X?

• the result is Y
4. replace ?@X? with Y

• the final result is WPY
2.3.3 Variable scoping rules
Variable scoping rules are the same for both single-value and
multi-value variables. The <set> command(s) in the ancestor x-
frame takes precedence over <set> commands in its descendent x-
frames. That is, once an x-frame X sets the value of variable v,
<set> commands that define the same variable v in descendent x-
frames (if any) visited by the processor will not take effect.
However, the subsequent <set> commands in x-frame X can reset
the value of variable v.

Variables become undefined as soon as the processing level rises
above the x-frame that effectively set variable values. (Note:
variables that are set within <insert> commands become
undefined when the processing level rises above the x-frame
containing the <break>.) This makes it possible for other x-frames
to set and use the same variables and prevents interference among
variables used in two different x-subframeworks in the x-
framework.

The above scoping rules are important for reuse. So that they can
be reused in many systems, lower level x-frames are usually
generic, meaning that they contain variables, <break>s, and
<select>s. Such x-frames use <set> commands to define default
values of variables to produce a default output text. When an
ancestor x-frame needs to adapt such an x-frame to its context, it
can use <set> commands to override one or more of the defaults,
thereby customizing the output text.

3 NOTEPAD EXAMPLE
This example uses the development of a generic text editor
(Notepad) to illustrate XVCL concepts and the usage of XVCL
commands. A simple Notepad is presented in Figure 3.

Figure 3. A simple Notepad

This Notepad is a typical Java Window, with a menu-bar, a
toolbar and an editing panel inside. It supports basic text editor
functionalities such as opening and editing a file. However, our
objective is not to develop just one-of-a-kind Notepad, but a
generic and flexible Notepad system so that:

1) Other similar systems (members of Notepad product line) can
be easily developed from it.

2) It can cater for the changes arising from system maintenance
and evolution.

The above two situations result in many variant requirements,
such as:

• Notepad may have more menus (and menu items) or toolbar
buttons to support more functionality.

• The title (name) of the Notepad may change.

• Different appearance (“look and feel”) of the Notepad (e.g.,
Microsoft Window style, Motif style, etc.).

• The background color of the Notepad may vary.

How does one design the Notepad so that it can be easily
customized/changed to meet the variant requirements? In this
section, we shall illustrate a solution to this problem in XVCL.
Due to space constraints, we only show how we handle the
toolbar, title, and background variant requirements. The complete
description of the Notepad example can be found at our website at
www.comp.nus.edu.sg/labs/software/xvcl.html.

3.1 Notepad x-frame
Figure 4 shows an x-frame for Notepad. It contains the default
code that is common to all Notepads, as well as XVCL commands
that indicate the variation points.

- SEKE '02 - 345 -

<x-frame name="Notepad">

<!-- default settings for variables in this x-
frame: -->

<set var=”TITLE” value="Notepad"/>
<set var=”BGCOLOR” value="gray"/>

<break name="NOTEPAD_NEWPARAMETERS"/>

import java.awt.*;
import java.awt.event.*;
import java.util.*;

import javax.swing.text.*;
import javax.swing.event.*;
import javax.swing.*;

<break name="NOTEPAD_NEWIMPORTS"/>

class Notepad extends JPanel {

Notepad() {
super();
…

}

public static void main(String[] args) {
JFrame frame = new JFrame();
frame.setTitle("<value-of

expr="?@TITLE?"/>");
frame.setBackground(Color.<value-of

expr="?@BGCOLOR?"/>);
…
frame.show();

}
<adapt x-frame="Editor.XVCL"/>
<adapt x-frame="Menubar.XVCL"/>
<adapt x-frame="Toolbar.XVCL"/>

…
<break name="NOTEPAD_NEWMETHODS"/>

}

</x-frame>

Figure 4. Notepad.XVCL

A typical Notepad is composed of many components such as an
editor, a menubar, a toolbar, etc. We design an x-frame for each of
these components. Each x-frame can be separately reused and

maintained. We include these x-frames into the Notepad x-frame
by using the <adapt> command.

Different Notepads may have different names. We use XVCL
variable TITLE to represent the name of the Notepad. The first
<set> command assigns a default value “Notepad” to variable
TITLE. Command <value-of expr="?@TITLE?"/>
indicates a place holder where the default value of the variable
TITLE can be substituted at program construction time. Similarly,
we use XVCL variable BGCOLOR to handle variations in
Notepad’s background color.

The <break name="NOTEPAD_NEWPARAMETERS"/>
command indicates a breakpoint at which the declarations of
additional XVCL variables may be inserted. Similarly, the
<break name="NOTEPAD_NEWMETHODS"/> command
indicates a breakpoint at which possible new methods could be
inserted.

3.2 Toolbar x-frame
Looking at Notepad’s toolbar carefully you may discover that
there are many commonalities among various tool buttons.
Basically, each tool bar has a name, an icon (stored as a .gif file)
and an associated action. Code for creating one tool button is very
similar to the code for creating other tool buttons. This motivates
us to design a generic solution for creating all kinds of tool
buttons and toolbars. Figure 5 shows an x-frame Toolbar.XVCL
from which we can generate Java code for creating toolbars.

Comments on x-frame Toolbar.XVCL of Figure 5: Each button in
the tool bar has an icon, a tip and an associated action. For each
tool button, we must create its icon, link the button to a tool tip
and to an action. Code for creating tool buttons is generated in the
<while> loop. We use a multi-value variable ToolbarBtns to
represent the buttons in the toolbar. Depending on the value of the
variable ToolbarBtns (referred to in expression ?@ToolbarBtns?),
the corresponding code for creating tool buttons is generated (If
the value is “-”, the code for creating a separator is generated).
The name expression ?@Gif@ToolbarBtns? represents a generic
tool button icon. Icons are defined in corresponding .gif files.
Based on the value of the variable ToolbarBtns (e.g., New, Open,
Save, Exit), a file containing the proper tool button icon is
selected. The name expression ?@Tip@ToolbarBtns? represents a
generic tool button tip and is used to assign tips to tool buttons.
Expression “?@Action@ToolbarBtns?() ” represents a generic
tool button action. The value of name expression
?@Action@ToolbarBtns? is evaluated and concatenated with
brackets “(“ and “)” to create the name of a method that will be
invoked when a particular button is clicked.

<x-frame name="Toolbar">

<!-- default settings for multi-value variable ToolbarBtns: -->
<set-multivar="ToolbarBtns" value="New,Open,Save, -, Exit"/>

<break name="TOOLBAR_NEWPARAMETERS"/>

<!-- Create a Java toolbar -->
private Component createToolbar() {

JToolBar toolbar = new JToolBar();
JButton button;

<while using-items-in="?@ToolbarBtns?">
<select option="?@ToolbarBtns?">

- SEKE '02 - 346 -

<option value="-">
toolbar.add(Box.createHorizontalStrut(5));//Creating a separator between two buttons

</option>
<otherwise>

// Creating a button icon
button = new JButton(new ImageIcon("<value-of expr="?@Gif@ToolbarBtns?"/> "));

//linking the button to a tool tip
button.setToolTipText("<value-of expr="?@Tip@ToolbarBtns?"/>");
button.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent e) {
<value-of expr="?@Action@ToolbarBtns?()"/>;

}
}); //linking the button to an action

toolbar.add(button);
</otherwise>

</select>
</while>

toolbar.add(Box.createHorizontalGlue());
return toolbar;

}

<break name="TOOLBAR_ACTIONS">
<while using-items-in="?@ToolbarBtns?">

<select option="?@ToolbarBtns?">
<option value="-">
</option>
<otherwise>

<adapt x-frame="?@Action@ToolbarBtns?.XVCL"/>
</otherwise>

</select>
</while>

</break>

</x-frame>

Figure 5. Toolbar.XVCL

The <while> loop iterates over tool buttons and assigns icons, tips
and actions to them, one by one.

We use the command <adapt x-
frame="?@Action@ToolbarBtns?.XVCL"/> to adapt x-frames
containing the implementation of actions for various tool buttons.
An example of x-frame for the “New File” action is shown below.

<x-frame name="NewFile">
private void NewFile() {

<break name="NEWFILE">
editor.setDocument(new PlainDocument());
revalidate();

</break>

return;
}
</x-frame>

Figure 6. NewFile.XVCL

3.3 Notepad x-framework
An overview of a Notepad x-framework is shown in Figure 7. It
has a tree-like hierarchical structure, where upper layer x-frames
adapt lower layer x-frames.

Toolbar Menubar

Cut

Notepad

NewFile OpenFile SaveFile

Ediotr

Copy PasteAbout

FileLoader

Figure 7. The Notepad x-framework

3.4 Specification x-frame (SPC)
The specification for a particular Notepad system is described in
the specification x-frame (SPC). An SPC tells the XVCL
processor how to customize x-frames to generate the code that
meets the specific requirements. Figure 8 shows an SPC for a
specific Notepad. This SPC defines the title of the Notepad as “A

Adapt Legend:

- SEKE '02 - 347 -

Notepad”, and defines the background color as “lightGray”. The
SPC also defines six buttons (new, open, save, cut, copy, and
paste) with their associated icons (.gif files), tips and actions.
These specifications describe a specific Notepad that is needed.
Given the SPC, the XVCL processor traverses and customizes the
Notepad x-framework to generate Java code for a specific
Notepad.

<x-frame name="Notepad"
outfile="Notepad.java" language="java">

…
<set var="TITLE" value="A Notepad"/>
<set var="BGCOLOR" value="lightGray"/>

<set-multivar="ToolbarBtns"
value="New,Open,Save,-,Cut,Copy,Paste"/>

<set var="GifNew"
value="resources/new.gif"/>
<set var="GifOpen"
value="resources/open.gif"/>
<set var="GifSave"
value="resources/save.gif"/>
<set var="GifCut"
value="resources/cut.gif"/>
<set var="GifCopy"
value="resources/copy.gif"/>
<set var="GifPaste"
value="resources/paste.gif"/>

<set var="TipNew" value="Create a file"/>
<set var="TipOpen" value="Open a file"/>
<set var="TipSave" value="Save to a file"/>
<set var="TipCut" value="Move selection to
clipboard"/>
<set var="TipCopy" value="Copy selection to
clipboard"/>
<set var="TipPaste" value="Paste clipboard
to selection"/>

<set var="ActionNew" value="NewFile"/>
<set var="ActionOpen" value="OpenFile"/>
<set var="ActionSave" value="SaveFile"/>
<set var="ActionExit" value="Exit"/>
<set var="ActionCut" value="Cut"/>
<set var="ActionCopy" value="Copy"/>
<set var="ActionPaste" value="Paste"/>

<adapt x-frame="Notepad.xvcl"/>

</x-frame>

Figure 8. SPC Notepad.S

Comments on SPC Notepad.S of Figure 8: The multi-value
variable ToolbarBtns defines buttons (such as New, Open, Save,
etc.) that make up a specific tool bar:

<set-multivar="ToolbarBtns" value="New,Open,Save,-
,Cut,Copy,Paste"/>

Variable ToolbarBtns drives <while> loops in the Toolbar.xvcl x-
frame (Figure 5).

Six commands starting with: <set var="GifNew"
value="resources/new.gif"/> define .gif files containing tool
button icons. After that, the reader can find similar commands for
button tips and actions.

The Notepad x-framework facilitates evolution that may occur in
the future. Certain types of changes can be easily accommodated
into the Notepad x-framework by modifying values of suitable
XVCL variables. To address more drastic unexpected changes, we
may need to adapt x-frames at breakpoints (via <insert>
commands in the SPC) or add new breakpoints in x-frames.

While all the changes can be kept separately from the affected x-
frames (in SPCs), x-frames themselves also do evolve over time.
As requirements change, we may need to re-design some of the x-
frames and extend them to enable reuse of new functions.

4 COMPARISON OF XVCL AND OTHER
APPROACHES TO PRODUCT LINES

4.1 Templates
Templates evolved from macros in C language. Templates
(particularly in C++) facilitate reuse by making the underlying
program functionality independent of data types. Templates
support selection and composition of functions and classes by
creating conditional control selection (e.g., IF<> and SWITCH<>
templates) and repetitions (e.g., WHILE<>, DO<> and FOR<>
templates). Although these mechanisms allow certain degree of
flexibility in template composition, they can only cater for
anticipated changes.

XVCL, on the other hand, can cater for both anticipated changes
(with <select>s) and unexpected changes (with <break>s). Being
an advanced form of a macro system, XVCL facilitates template-
like meta-programming [4] and code generation. X-frames may be
viewed as highly configurable parameterized templates or meta-
components. Not only do they provide for variability of data types
in classes and functions, but also for variability in any functional
and non-functional system requirements. Each x-frame localizes
the impact of change by providing default composition rules and
configuration knowledge.

Templates support decomposition of a program along class,
function and parameter boundaries. X-frames on the other hand,
are language independent and support arbitrary decomposition and
composition of a program (such as having generic data structures
defined independently of the generic methods that use them).
Thus, it is not only easy to write templates in XVCL but it also
permits a stronger separation of concerns.

4.2 Software Configuration Management
(SCM)

A number of studies have been carried out on the role of SCM
systems in software reuse (e.g., PCL). Most of the SCM systems
concentrate on managing versions of source and binary files and
identifying correct versions of these files in system building.

PCL [5], a configuration language proposed by Gulla and Floch,
enables instantiation of highly parameterized components by
allowing users to configure component parameters and component
compositions. This achieves a certain degree of component reuse.
However, components’ parameterization mechanism is not
sufficient to achieve high levels of reuse. Any given component

- SEKE '02 - 348 -

may need to satisfy different combinations of properties. For each
legal combination of properties, a PCL system maintains a
separate component version. In XVCL, on the other hand, x-
frames capture component variability in a same-as-except manner
rather than keeping different versions for different property
combinations. X-frames also facilitate configuration of variants in
any level of granularity in program source code. This prevents the
number of components in the x-framework from exploding.

One of the strong points of SCM systems is their parallel and
concurrent version control mechanism, very much different from
the version control mechanism in XVCL. XVCL provides implicit
version control, where different versions of systems are captured
and produced by means of configuration and adaptation
knowledge of x-frames.

4.3 Macro Systems
Macro systems are probably the oldest form of meta-
programming. They have been integrated into both procedural and
object-oriented languages to facilitate writing more flexible and
reusable programs. XVCL is as an advanced form of macro
system. XVCL variable is a counterpart of macro parameter. The
<adapt> command in XVCL is similar to a macro call, while the
<set> command corresponds to setting a value of a macro
parameter. XVCL decouples variables from an x-frame itself – an
x-frame can refer to any variable in its ancestor x-frames.
Therefore unlike in macros, variables set in a higher level x-frame
can be passed to lower level x-frames without involving
intermediate x-frames.

In XVCL, variables are local to an x-frame, meaning that only an
x-frame that first sets the value of a variable can reset its value.
Once the value of a variable has been set, the variable is “read
only” to its descendent x-frames. The aim of this variable scoping
rule is to keep lower level x-frames as generic (meaning context
free, reusable) as possible. SPC x-frame (and other higher level x-
frames) can adapt any lower x-frames to produce the customized
system.

In XVCL, variables become undefined as soon as the processing
level rises above the x-frame that effectively set variable values.
This makes it possible for other x-frames to set and use the same
variables and prevents interference among variables used in two
different subtrees in the x-framework.

In macros, there is no concept of default values for parameters
(other than null values). In XVCL, this concept plays an important
role in fostering reuse. All the variables in x-frames have default
values as defined by <set> commands. Only the variables with
default values that need to be changed are passed by the ancestor
x-frame. The rest are used unchanged. This greatly reduces the
complexity that the ancestor x-frames have to handle.

A macro cannot customize the content of other macros. This limits
reusability of macros– if a macro does not fit a particular reuse
context, it cannot be adapted. X-frames, on the other hand, can
customize other x-frames for reuse using <insert> and <break>
commands.

Once the structure of macro composition is established, it cannot
be changed. We cannot easily add, remove or change macro calls
in existing macros. On the other hand, XVCL allows one to
modify x-frame calling structure by inserting new <adapt>
commands into x-frames. The <insert> command can insert

XVCL commands such as <adapt> at the <break>s in the lower-
level x-frames. Those commands are executed as if they were
originally declared in affected x-frames. This customization
mechanism adds extra flexibility to x-frames, making them
reusable in many contexts.

5 CONCLUSIONS
XVCL (XML-based Variant Configuration Language) is a
general-purpose mark-up language for configuring variants in
programs and other types of documents. In this paper, we
described a subset of XVCL. We trust this subset of XVCL is easy
to understand and still effectively communicates essential XVCL
concepts. To illustrate the XVCL method, we further described an
XVCL solution to handling variants in a Notepad system. The
principles of the XVCL have been thoroughly tested in practice.
XVCL is based on the same concepts as the frame technology [1].
Frame technology has been extensively applied in industry to
manage variants and evolve multi-million-line, COBOL-based,
information systems. An independent analysis showed that frame
technology has reduced large software project costs by over 84%
and their times-to-market by 70%, when compared to industry
norms [1, 2]. At the same time, we found that the principles of
XVCL are not easy to communicate. The purpose of this paper is
to fill this gap. In particular, the comparison with the more
familiar programming mechanisms of template, configuration
management, and macro, should help to clarify the ideas.

6 REFERENCES
[1] Bassett, P. Framing Software Reuse - Lessons From Real
World, Yourdon Press, Prentice Hall, 1997.
[2] Bassett, P. “The Theory and Practice of Adaptive
Components”, Proc. 2nd International Symposium on Generative
and Component-Based Software Engineering, GCSE 2000, Erfurt,
Germany, October 9-12, 2000, Springer Lecture Notes in
Computer Science, LCNS2177, (Eds. G. Butler and S. Jarzabek),
pp. 1-14
[3] Cheong, Y.C. and Jarzabek, S. “Frame-based Method for
Customizing Generic Software Architectures", Proc. Symposium
on Software Reusability, SSR’99, Los Angeles, May 1999, pp.
103-112
[4] Czarnecki, K. and Eisenecker, U., Generative Programming:
Methods, Tools, and Applications, Addison-Wesley, 2000.
[5] Floch, J. and Gulla, B. “Enabling reuse with a Configuration
Language”, Proc. of the Fourth International Conference on
Software Reuse (ICSR '96), Orlando, FL, 1996.
[6] Jarzabek, S. and Seviora, R. “Engineering components for ease
of customization and evolution,” IEE Proceedings - Software,
Vol. 147, No. 6, December 2000, pp. 237-248, a special issue on
Component-based Software Engineering.
[7] Jarzabek, S. and Zhang, H. “XML-based Method and Tool for
Handling Variant Requirements in Domain Models”, Proc. of 5th
IEEE International Symposium on Requirements Engineering,
RE’01, IEEE Press, August 2001, Toronto, Canada, pp. 166-173
[8] Wong, T.W., Jarzabek, S., Myat Swe, S., Shen, R. and Zhang,
H.Y. “XML Implementation of Frame Processor,” Proc. ACM
Symposium on Software Reusability, SSR’01, Toronto, Canada,
May 2001, pp. 164-172

- SEKE '02 - 349 -

	INTRODUCTION
	SALIENT FEATURES OF XVCL
	XVCL Fundamentals
	Description of Essential XVCL Commands
	XVCL Expressions and Variable Scoping Rules
	References to variables
	XVCL expressions
	Variable scoping rules

	NOTEPAD EXAMPLE
	Notepad x-frame
	Toolbar x-frame
	Notepad x-framework
	Specification x-frame (SPC)

	COMPARISON OF XVCL AND OTHER APPROACHES TO PRODUCT LINES
	Templates
	Software Configuration Management (SCM)
	Macro Systems

	CONCLUSIONS
	REFERENCES

