

Bing Developer Assistant: Improving Developer
Productivity by Recommending Sample Code

Hongyu Zhang†, Anuj Jain§, Gaurav Khandelwal§, Chandrashekhar Kaushik§, Scott GeТ,
Wenxiang Hu†

† Microsoft Research, Beijing 100080, China, China
§Microsoft Corporation, Hyderabad, India, ТMicrosoft Corporation, Redmond, USA, USA

{honzhang, anjai, gaurav.khandelwal, chkaus, jialiang.ge, v-wenxhu}@microsoft.com

ABSTRACT
In programming practice, developers often need sample code in
order to learn how to solve a programming-related problem. For
example, how to reuse an Application Programming Interface (API)
of a large-scale software library and how to implement a certain
functionality. We believe that previously written code can help
developers understand how others addressed the similar problems
and can help them write new programs. We develop a tool called
Bing Developer Assistant (BDA), which improves developer
productivity by recommending sample code mined from public
software repositories (such as GitHub) and web pages (such as
Stack Overflow). BDA can automatically mine code snippets that
implement an API or answer a code search query. It has been
implemented as a free-downloadable extension of Microsoft Visual
Studio and has received more than 670K downloads since its initial
release in December 2014. BDA is publicly available at:
http://aka.ms/devassistant.

CCS Concepts
• Software and its engineering➝		Reusability

Keywords
API; API Usage Extraction; Code Search; GitHub; Software Reuse

1. INTRODUCTION
Programming is sometimes hard. In practice developers often face
many challenges that are associated with problem solving. For
example, developers often wonder how to implement a certain
functionality (e.g., how to save an image in PNG format in C#).
Although APIs (Application Programming Interfaces, such as
Image.Save and Image.Tag in .NET framework) provide an
important form of software reuse and have been widely used for
effective problem solving, developers still need to know how to
reuse an API? A large-scale software framework, such as the .NET
framework, could contain hundreds or even thousands of APIs.
Programmers often do not remember exactly how a certain API
function should be reused. Many APIs are not well documented
either. In a survey conducted at Microsoft in 2009, 67.6%

respondents mentioned that there are obstacles caused by
inadequate or absent resources for learning APIs [9, 10]. Besides
API functions, developers may also need to know the usage of a
public class, structure, or property. Therefore, it is desirable if an
IDE can provide developers with sample code about APIs
whenever they encounter programming difficulties.

Over the years, millions of software programs have been developed
and deployed. The source code of these programs is typically stored
in software repositories (such as GitHub) and can be treated as
important reusable assets for developers. Previously written
programs can help developers understand how others addressed the
similar problems and can serve as a basis for writing new programs.
Furthermore, the emergence of online developer-centric question
answering (QA) forums such as Stack Overflow also provide
abundant resources (including sample code) for solving
programming-related problems.

Many modern Integrated Development Environments (IDEs, such
as Microsoft Visual Studio) provide rich features for effective
program development. However, most of the IDEs do not provide
sample code to developers. Although developers can turn to a
general web search engine such as Bing or Google to look for a
sample solution, they often need to leave their IDE environment
frequently and switch the context between IDE and web browser.
This could result in productivity loss. Also, some programming-
related problems such as the usage of a certain API, may not be
well supported by a general web search engine.

We develop a tool, called Bing Developer Assistant (BDA), to help
improve developer productivity by mining software repositories
and web pages. We deploy the backend of BDA as a Microsoft
Azure service and implement the frontend as a Visual Studio
extension. BDA can automatically detect the APIs under editing in
the current programming context via the IntelliSense feature of
Visual Studio and provide sample code that contains the usage of
the APIs. BDA also leverages Bing search engine to support free-
text based code search queries. BDA provides an in-place entry
point to sample solutions for more efficient task completion.

Currently, BDA supports C/C++/C# languages. BDA has been well
received by developers. It has attracted more than 670K downloads
since its initial release in December 2014. BDA is now available
for download at: http://aka.ms/devassistant. We are also extending
BDA as a service to support more languages such as Java and
JavaScript and more application scenarios. In this paper, we will
describe the development of BDA and the results.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2983955

956

2. GETTING SAMPLE CODE FROM
SOFTWARE REPOSITORIES
In this section, we describe the proposed framework for extracting
API sample code from a software repository. The sample code is
for understanding the usage of a variety of APIs including public
Class, Function, Structure, Property, etc. Figure 1 shows an overall
framework of our approach. We first construct a large-scale
software repository by crawling source code projects from websites
such as MSDN and GitHub. The repository contains source files
written in different languages such as C/C++/C#/Java. We then
utilize compilers such as Clang1 (for C/C++), Roslyn2 (for C#), and
JDT3 (for Java) to statically analyze these source files and produce
an intermediate representation (Abstract Syntax Trees). The API-
related source code information can be inferred from the ASTs. The
resulted API usage data (including information about project, file,
line, etc.) is stored in Azure Table4. Finally, the associated sample
code can be extracted for use (by clients such as Visual Studio IDE).

Figure 1: Mining API usage from software repositories

In particular, we develop a static analyzer, which parses the source
code file into ASTs and then performs data extraction upon visiting
each AST node. The analyzer is based on a compiler frontend (such
as Clang's LibTooling, which is a library for exposing ASTs). In
this way, we do not require any .dll/.so files or any specific runtime
environment.
The algorithm used by the static analyzer is shown in Figure 2. It
contains three main parts: the first one (Main) is to parse the source
code file to AST, the second one (Visit) is to traverse the nodes in
the AST, and the third one (Process_*) is a set of functions
corresponding to different types of AST nodes. Given a source code
file and the directories where the header files should be, the
analyzer parses the source code file and the associated header files.
The AST for the source code file and the ASTs for the header files
are combined into one large AST as an intermediate representation.

1 http://clang.llvm.org
2 https://github.com/dotnet/roslyn
3 http://www.eclipse.org/jdt

After the combined AST is generated, the analyzer performs an in-
order traversal of the AST. When the analyzer visits the nodes that
we are interested in, such as function call or variable declaration, it
further processes the AST node by its type. In Figure 2, we only
show the pseudocode for processing the function calls. We also
implement a series of processing methods for other API types such
as Classes and Objects.

Figure 2: The algorithm for extracting API usage data

Figure 3: An example of API call

We illustrate the algorithm using an example of an API call (Figure
3). Figure 3 contains a fragment of the whole AST, as well as two
corresponding source code files. When we visit the nodes of "a.c",

4 https://azure.microsoft.com/en-
us/documentation/articles/storage-dotnet-how-to-use-tables/

957

we find that a node is actually a function call – "foo(1)". We use the
callee's identifier to look up its valid declaration in the header file’s
AST nodes. As a result, we find that the declaration node in the
"a.h" is what we want. We then check where this file is from. In
this case, the "a.h" file is from the same directory as the "a.c",
therefore we mark it as a user-defined API and record this along
with its source code location in "a.c".

One challenge we faced is about third-party library support. This is
actually reflected by the Which_Library function in Figure 2. We
need to know which library an API foo comes from. If we are able
to solve the dependency problem (e.g., in the case of C#, whose
dependency can be resolved with the help of Nuget5), we build a
list of <library name, library’s API list> pairs. After parsing a
source code file to AST and visiting each node in the AST, we can
extract the APIs we want to know and search for the corresponding
library name.

However, in some languages such as C/C++, we often cannot build
a project successfully by executing the make file because the
platform/environmental settings of the project. It is also not easy to
resolve all the project dependencies. The absence of some third-
party libraries makes it even more challenging to identify an API
of a third-party library as the associated header files are missing.
Considering the situation described in Figure 3, if the header file
"a.h" is missing, we only know that foo is a function call statement
but we do not know where the function is declared. In this case, we
would fail to compile the source code file without the method.

BDA supports a list of commonly-used third-party libraries. We use
Nuget5 and GitHub to select the most popular third-party libraries
(e.g., we select 1200 popular libraries for C/C++) that are widely
used by developer community. We also generate a list of <path,
libname> pairs, where libname indicates the name of a third-party
library and path indicates the exact path to the header file. During
program analysis, we obtain the path of the API under analysis and
search it in the list of <path, libname> pairs. In this way, we know
the third-party library the API belongs to, even we cannot build the
project successfully.

After processing all the projects in software repository, we obtain
the API usage data (including information about the API name, the
library it belongs to, project, file, line number, etc.). We store these
data in Microsoft Azure Table. Based on the usage data, sample
code for the APIs can be readily retrieved for various application
scenarios.

At the BDA client side, we hook the IntelliSense6 interface of
Visual Studio to obtain the context of program under editing. The
IntelliSense interface can automatically provide developers with a
list of APIs that could be used in the current programming context.
Such API information is used to trigger our BDA sample code
service within the Visual Studio environment.

3. GETTING SOLUTIONS FROM BING
SEARCH ENGINE
To help developers understand how to implement a certain
functionality, we integrate a code search component into Developer
Assistant. Developers can enter a natural language query (such as
how to save an image) describing the problem at hand. BDA can
automatically invoke a web search using the Bing search engine
(www.bing.com) and suggest relevant snippets obtained from the
returned web pages (such as Stack Overflow and MSDN web

5 https://www.nuget.org/

pages). Figure 4 shows an overall framework of mining sample
code using Bing.

More specifically, given a user query, BDA first extends the
original query by appending the programing language used in the
current programming context (such as "how to save an image in
c#"). It then invokes the Bing search engine to find web pages
related to that query. Upon retrieving the top 10 web pages, BDA
identifies and extracts code from the HTML pages (based on
HTML tags such as hprei, hcodei, hpi, and hdivi). BDA also ranks
the extracted snippets based on relevancy and the number of
votes/accepts, and displays them within the Visual Studio
environment. In this way, users do not have to launch a separate
web browser to perform a code search query. Our user study shows
that the average response time per query is 1.5 second, which
provides a smooth user experience. More details about the code
search feature of BDA can be found at [17].

Web	Pages	
(StackOverflow,	MSDN,	etc)

Free-text	
Query

Bing

Code	Snippets

Code	Extraction

Search	Results
Internet	

Figure 4: Mining sample code using Bing

Apart from providing code snippets, BDA also supports the
recommendation of sample projects based on a user query. Code
sample projects are complete Visual Studio solutions that
developers can download, build and run. Upon receiving a free-
text user query, BDA can invoke Bing search engine to retrieve
most relevant projects from sites like MSDN and GitHub. The
project information (such as project URL, author, license, ratings,
etc.) are extracted and displayed within the Visual Studio
environment. Developer productivity could be improved by reusing
the entire solution.
BDA can also provide solutions for compilation errors. Once a
compilation error occurs when compiling a program using Visual
Studio, the user can simply right click and invoke contextual search.
The BDA client will extract the current context (e.g. error
codes/message, project type, data types, programming language
being used, etc.). It then sends the context to the backend service,
which will in turn extract relevant features from the context,
generate a contextual query, and invoke Bing search engine to
obtain the sample solutions for the compilation error. The obtained
sample solutions are returned to the user. As an example, say we
are editing a C++ program and using "std::string" class to store a
"hello world" string. If we forget to include the header file "string",
Visual Studio will report an error message such as 'string' is not a
member of 'std'. This message could be a bit confusing to some new
developers. BDA can help with it by providing a sample solution.
The error message and other contextual information are
automatically combined to form a query, which is passed to BDA

6 https://msdn.microsoft.com/en-us/library/hcw1s69b.aspx

958

backend service for Bing search. The Bing search results (in this
case, a Stack Overflow webpage about solving the same
compilation problem) is returned and displayed within Visual
Studio.

4. TOOL IMPLEMENTATION AND
RESULTS
4.1 Tool Implementation
To obtain sample code about API usage from source code
repositories, we construct a large-scale codebase by crawling
projects from MSDN and GitHub. In order to remove dummy
projects, for GitHub we only crawl projects that have at least 1 star.
In total, we have crawled 65,253 projects. The total size of these
projects is around 437 GB, containing about 3.5 million source
code files. Table 1 shows the statistics of the obtained results.

Table 1. The statistics of the obtained API usage data
Language #Projects #Files #Unique

APIs
#Code
Snippets	

C/C++ 12,162 730,084 2,980,543 43,944,234

C# 26,322 907,632 698,651 12,336,251

JavaScript 17,115 453,449 21,280 4,205,998

Java 9,654 1,398,695 68,958 17,679,077

Total 65,253 3,489,860 3,769,432 78,165,560

The API usage data and sample code are stored in a number of
Microsoft Azure servers located around the world. The indexing
and retrieving process is performed by Microsoft Azure Table. The
client side is an extension that supports Microsoft Visual Studio
(2012-2016). We hook the IntelliSense7 interface of Visual Studio
to obtain the context of program under editing. The APIs provided
by IntelliSense trigger the backend BDA service. The returned
sample code about the APIs are automatically obtained from Azure
servers and displayed within Visual Studio.

Figure 5: Recommending API sample code

Figure 5 shows a screenshot of BDA for recommending API
sample code. When a user types an incomplete API, Visual Studio
(through its IntelliSense feature) will recommend a list of candidate
APIs. If the user does not know how to use these APIs, she can
examine the sample code returned by BDA within the Visual Studio
environment. In Figure 5, the user enters an incomplete API

7 https://msdn.microsoft.com/en-us/library/hcw1s69b.aspx

'doc.l…', BDA automatically recommends a code snippet for a
candidate function 'Load'.

Currently, BDA provides sample code/projects collected from a
variety of websites through Bing search. These websites include
Stack Overflow, dotnetperls, C#411, Cppreference, cplusplus.com,
and MSDN. Table 2 shows the total number of code snippets that
can be obtained from two popular software forums (Stack Overflow
and MSDN), as of June 2016.

Table 2. The total number of code snippets in two software
forums (June 2016)

Domain C# C/C++ JavaScript

MSDN 63,417 22,016 2,832

Stack Overflow 452,736 243,462 880,896

Figure 6 shows a screenshot of BDA for answering user’s free text
code search query. The user enters the query how to save an image
through the How do I interface. The request is sent to the BDA
backend and related code snippets extracted from web pages (in this
case, a code snippet from Stack Overflow) are returned to the user.

Figure 6: Recommending sample code based on user query

Figure 7: Recommending sample projects based on user query

Figure 7 shows a screenshot of recommending sample projects.
Through the search box of BDA, users can issue a free-text query

959

(in this case, ".net compiler") and access a large number of popular
open source projects sites such as GitHub and MSDN. Figure 7
shows that BDA retrieves projects such as Roslyn (the .NET
Compiler Platform). To facilitate reuse, BDA can also pull these
libraries into the user’s Visual Studio environment.

4.2 User Feedback
Bing Developer Assistant was first released in December 20148.
The GitHub integration was released on April 2015 during the
Microsoft Build 2015 conference9. BDA has been well received by
developers. It has received 670K+ downloads since its initial
release. Now it handles about 3 million sample code requests per
month. In Visual Studio Gallery, the overall user rating for BDA is
4 (out of 5)10.

We also received many encouraging comments from the survey.
For example:

 “It's awesome add-on, really helpful and speeding up development,
whenever you have doubts about the way to write the code you can
look it up directly from VS…” – szalap

 “Really neat! Love the way it inserts the code sample straight into
my code.” - Carl Clark

“Awesome, streamlined tool that makes it super easy to download
sample projects. No more zip files! Yes!” – ShrikeSoft

The users also gave us many constructive comments. For example:

 “Very nice and useful tool. I'm looking forward to support for more
languages.” - kevin-mcc

“Still getting used to it but I can see the potential. Any guidelines
as to how to get a code sample to show up would be handy.” -
JayChase

“Very resource-intensive assistant. Very nice idea though.
Hopefully performance will improve over time.” -- Ilia101

“When can we get this for python & R?” – Shahrokh Mortazavi
These comments suggest that the diversity, usability, and
performance of the tool could be further improved. We will address
these constructive comments and improve the tool in our future
work.

Overall, the results of real-world usage support our belief that BDA
can help improve developer productivity by providing a seamless
integration of sample code mining and Visual Studio.

5. RELATED WORK
In software development practice, developers frequently search for
sample code for reuse. Many code search tools, such as Ohloh [6]
and Krugle [5], have been proposed to help developers find relevant
code. Portfolio [8] visualizes relevant functions and their usages
using a combination of models that address surfing behavior of
developers. CodeHow [7] performs free-text based code search
over GitHub projects. It considers the impact of both text similarity
and potential APIs on code search. BDA supports code search
through Bing search engine. It also supports the recommendation
of API sample code mined from GitHub and web pages.

8 http://blogs.msdn.com/b/visualstudio/archive/2014/12/16/bing-
developer-assistant-for-visual-studio.aspx
9 http://blogs.msdn.com/b/visualstudio/archive/2015/04/30/github-

integration-in-developer-assistant.aspx

There is a lot of research on APIs. For example, API popularity [19],
API evolution [20], and API usage pattern mining [15, 16].
ParseWeb [11] accepts queries of the form “Source -> Destination”
from a developer and gives the code samples containing the given
Source and Destination object types. MAPO [16] and UP-Miner
[15] mine the patterns of API method calls from source code. Buse
and Weimer [2] presented an automatic technique for mining and
synthesizing API usage examples. Gu et al. [22] applied deep
learning to generate API usage sequences for a given natural
language query. Recently, to facilitate research on APIs, Sawant
and Bacchelli [12] developed a dataset for API usage by mining
GitHub projects.

Some researchers also explored the use of web search engines to
help with programming tasks [11]. For example, Mica [13] is a web
application that uses Google API to find relevant pages and then
analyze the content of those pages to extract the most relevant
programming terms. Assisme [4] and Blueprint [1] use general
search engines to search for results and automatically extract
relevant code snippets from the returned results. eXoaDocs [18]
facilitates API reuse by embedding API documents with code
examples mined from the Web. Unlike these related work, BDA
seamlessly integrates web search results into a programming IDE
(Visual Studio). BDA also supports the extraction of sample code
from open source projects. Seahawk [21] is an Eclipse plug-in that
integrates stackoverflow.com support into the IDE. It can
recommend relevant Stack Overflow posts within an IDE, while
BDA recommends sample code.

6. CONCLUSIONS
In this paper, we describe Bing Developer Assistant (BDA), a tool
that helps improve developer productivity by recommending API
sample code mined from public software repositories (such as
GitHub) and web pages (such as Stack Overflow). BDA provides
code snippets that implement an API or answer a code search query.
Using BDA, developers can find and reuse a large amount of
sample code from within the Visual Studio IDE.

We are now extending BDA as a service and integrating it with
other Microsoft services such as Bing.com. Through a Bing search,
developers can obtain the API sample code provided by BDA
service for a variety of programming languages. The returned
sample code is displayed within web browser. The API usage data
and sample code could also be used by other software engineering
research projects. The vision of Bing Developer Assistant is to
provide developer help across technologies and canvases. Currently
it only supports Visual Studio. We would soon extend the support
to other IDE ecosystems.

7. ACKNOWLEDGEMENT
We thank all Microsoft developers who participated in the
development and maintenance of Bing Developer Assistant,
especially Yi Wei, Vinod Patankar, Sumit Saluja, Sachin Joseph,
Shabbar Husain, Mei Liang, and Dongmei Zhang. We also thank
our intern students who helped with the implementation and
maintenance of BDA, especially Fei Lv, Wenhao Song, Sheng Tian,

10 https://visualstudiogallery.msdn.microsoft.com/a1166718-a2d9-
4a48-a5fd-504ff4ad1b65

960

Peiyong Lin, Senlan Yao, Qing Ren, Wangsheng Hu, Xutong Chen,
Chengxun Shu, Hong Wu, Xingzhao Yue, and Chen Xia.

8. REFERENCES
[1] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer,

“Example centric programming: Integrating web search into
the development environment,” in Proc. CHI ’10, 2010, pp.
513–522.

[2] P.L. Buse and W. Weimer. “Synthesizing API Usage
Examples,” In Proc. ICSE’12, pp 782-792, 2012.

[3] R.Holmes and G. C. Murphy. “Using structural context to
recommend source code examples,” In Proc. ICSE, 2005, pp.
117-125.

[4] R. Hoffmann, J. Fogarty, and D. S. Weld, “Assieme: Finding
and leveraging implicit references in a web search interface
for programmers,” in Proc. 20th Annual ACM Symposium on
User Interface Software and Technology (UIST ’07), 2007, pp.
13–22.

[5] Krugle code search. [Online]. Available:
http://www.krugle.com/

[6] Ohloh code search. [Online]. Available:
https://code.ohloh.net/

[7] F. Lv, H. Zhang, J. Lou, S. Wang, D. Zhang, and J. Zhao,
"CodeHow: Effective Code Search based on API
Understanding and Extended Boolean Model", in Proc. ASE
2015, Lincoln, Nebraska, Nov 2015, pp. 260-270.

[8] C.McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C.
Fu, “Portfolio: finding relevant functions and their usages,” In
Proc. ICSE 2011, pp. 111-120.

[9] M.P. Robillard, “What makes APIs hard to learn? Answers
from developers,” IEEE Software, vol. 26, no. 6, pp. 27–34,
2009.

[10] M.P. Robillard and R. DeLine. A Field Study of API Learning
Obstacles. Empirical Soft. Engin., 16(6): 703-732, 2011.

[11] S. E. Sim and R. Gallardo-Valencia, Finding Source Code on
the Web for Remix and Reuse, Springer, 2013.

[12] A. Sawant and A. Bacchelli, A Dataset for API Usage, in Proc.
12th Working Conference on Mining Software Repositories
(MSR), 2015, pp. 506-509.

[13] J. Stylos and B. A. Myers, “Mica: A web-search tool for
finding API components and examples,” in Proceedings of the
Visual Languages and Human-Centric Computing
(VLHCC ’06), 2006, pp. 195–202.

[14] S.Thummalapenta, T. Xie. “PARSEWeb: a programmer
assistant for reusing open source code on the web,” In Proc.
ASE 2007, pp. 204-213.

[15] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang.
Mining succinct and high-coverage API usage patterns from
source code. In Proc. of the 10th Working Conference on
Mining Software Repositories, pp. 319-328, 2013.

[16] H. Zhong, T. Xie, L. Zhang, J. Pei, H. Mei. “MAPO: mining
and recommending API usage patterns,” In Proc. ECOOP
2009, pp. 318-343.

[17] Y. Wei and N. Chandrasekaran and S. Gulwani and Y. Hamadi,
Building Bing Developer Assistant, Microsoft technical report
MSR-TR-2015-36, May 2015.

[18] J. Kim, S. Lee, S.-w. Hwang, and S. Kim. Towards an
intelligent code search engine. In Prof. 24th AAAI Conference
on Artificial Intelligence, 2010.

[19] Y. M. Mileva, V. Dallmeier, and A. Zeller, “Mining API
popularity,” in Testing–Practice and Research Techniques.
Springer, 2010, pp. 173–180.

[20] D. Dig and R. Johnson, “How do APIs evolve? a story of
refactoring,” Journal of software maintenance and evolution:
Research and Practice, vol. 18, no. 2, pp. 83–107, 2006.

[21] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack
overflow in the IDE,” in Proceedings of ICSE 2013 (35th
International Conference on Software Engineering, Tool
Demo Track), pp. 1295–1298, 2013.

[22] X. Gu, H. Zhang, D. Zhang, S. Kim. Deep API Learning, in
Proc. 24th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE 2016), Seattle,
WA, USA, November 2016.

961

