

XVCL: XML-based Variant Configuration Language

Stan Jarzabek

1
, Paul Bassett

2
, Hongyu Zhang

1
 and Weishan Zhang

1

1Department of Computer Science
School of Computing

National University of Singapore
Lower Kent Ridge Road, Singapore 117543
{stan, zhanghy, zhangws}@comp.nus.edu.sg

2Canadian Information Processing Society
National

2800 Skymark Ave., Suite 402
Mississauga, Ontario, Canada L4W 5A6

pbassett@cips.ca

1. An overview of XVCL

XVCL (XML-based Variant Configuration Language)

is a meta-programming technique and tool that provides

effective reuse mechanisms [2]. XVCL is an open source

software (http://fxvcl.sourceforge.net) developed at the
National University of Singapore. Being a modern and

versatile version of Bassett’s frames [1], a technology that

has achieved substantial gains in industry, the underlying
principles of the XVCL have been thoroughly tested in

practice. Unlike original frames, XVCL blends with

contemporary programming paradigms and complements

other design techniques. XVCL uses “composition with

adaptation” rules to generate a specific program from

generic, reusable meta-components. Program generation

rules are 100% transparent to a programmer, who retains

full control over fine-tuning the generated code. Despite

its simplicity, XVCL can effectively manage a wide range

of program variants from a compact base of meta-

components, structured for effective reuse.
Variants arise naturally in software reuse and

evolution, in particular, if you deal with software product

lines that encompass a family of similar systems. This is

exactly the context in which we have developed and

applied XVCL. Suppose you have a software product that

you want to run on different platforms or hardware

devices. Or you deliver versions of the same product to a

number of customers and these product versions differ in

some functional or non-functional requirements. XVCL

allows you to configure product variants from a common

core of generic, adaptable and reusable meta-components.

And you can apply the same XVCL concepts and
mechanisms to manage variants in a range of product line

assets such as software architecture, program code, test

cases, technical and user-level program documentation or

requirement specifications.

XVCL includes a methodology and a tool – the XVCL

processor. The XVCL methodology tells you how to

discover the structure of the solution for your application

domain and for the types of variants you want to address.

The XVCL processor automates the routine yet error-

prone program construction tasks, allowing you to focus

on what is novel about your problem domains, requiring

your creativity.

2. How does XVCL work?

XVCL works on the principle of constructing custom

systems by composing generic, reusable meta-

components, after possible adaptations. Adaptations of a
meta-component take place at designated variation points

marked by XVCL commands. This “composition with

adaptation” process turns meta-components into concrete

components of the custom system we wish to build.

To facilitate effective reuse, you split your program

into generic, reusable and adaptable meta-components. A

meta-component is an XML file with program code

(written in any programming language), instrumented

with XVCL commands for ease of change and evolution.

XVCL commands, designed as XML tags, allow the

composition of the meta-components, selection of pre-

defined options based on certain conditions, etc. Meta-
variables and expressions provide a powerful

parameterization mechanism. Values of meta-variables are

propagated across meta-components and variable scoping

rules enhance genericity and reuse.

You organize meta-components into a layered

hierarchy called an x-framework. Meta-components at

lower-levels are building blocks for the higher-level meta-

components - XVCL processor composes higher level

meta-components from lower-level meta-components,

after applying possible adaptations to them. An x-

framework forms a base of reusable assets, such as a
product line architecture, from which you build custom

systems.

The XVCL processor traverses an x-framework,

executes XVCL commands embedded in visited meta-

components and generates custom code.

3. Applications and benefits of XVCL

Applications of XVCL include design of reusable
program components, implementing product line

architectures, design of compact, non-redundant,

Proceedings of the 25th International Conference on Software Engineering (ICSE�03)
0270-5257/03 $17.00 © 2003 IEEE

therefore, easy to maintain programs, and managing
variants in multiple versions of software documents and

models. We envision many other applications in software

and non-software domains.

XVCL is based on Bassett’s frame technology [1].

Frames have been applied in industry to manage variants

and evolve multi-million-line, COBOL-based, information

systems. While designing a frame architecture is not

trivial, subsequent productivity gains are substantial. An

independent analysis showed that frames can reduce large

software project costs by over 84% and their times-to-

market by 70%, when compared to industry norms (refer
to QSM report in [1]). By reusing skillfully structured

frame architectures, you need to focus on only the 5%-

15% of a program solution that is unique; the other 85%-

95% is reused. These gains are due to the flexibility of the

resulting architectures and their evolvability over time.

Our XVCL is extensible and, of course, free of

COBOL heritage. We applied XVCL to design product

line architectures for component-based systems written in

Java, and using RMI, J2EE or CORBA for component

communication. We designed Facility Reservation System

(FRS) and Computer Aided Dispatch system (CAD)

product line architectures [3,4]. An FRS helps in the
reservation of facilities (such as tutorial rooms, hotel

rooms, lecture theaters) and specific equipment. Different

organizations such as universities, hotels, hospitals and

companies, have different physical facilities and

arrangements for their reservation. The similarities and

differences among FRSes yield a product line. We started

by selecting common and variant functional requirements

to be implemented in the FRS product line architecture.

Our FRSes were built as EJB™ components, organized

into a 3-tier architecture. We used XVCL to create

generic, reusable meta-components from which we could
generate custom runtime EJB components that met

functional variants for a specific FRS we wish to build.

Computer Aided Dispatch systems (CAD for short)

are used by police, fire and rescue and other similar

organizations to dispatch resources (e.g., police cars) to

handle incidents
1
. CAD systems are distributed over the

Internet, with components dedicated to different roles

(indicated in Figure 1) running on different computers. At

the basic operational level, all CAD systems are similar -

they support the dispatch of units to handle incidents.

However, the specific context of the operation (such as

police or fire & rescue) results in many variations on the
basic operational scheme. We addressed CAD variants

related to functional requirements, component

distribution, platforms and reliability. For example, in

some CAD systems Call Taker and Dispatcher roles may

be played by two different people and in others - by the

1
 Project funded by Singapore National Science and Technology Board
and Canadian Ministry of Energy, Science and Technology, involving

National University of Singapore, Singapore Engineering Software Pte

Ltd, University of Waterloo and Netron, Inc. (Toronto).

same person. This variant has impact on system functions,
user interface and component distribution.

incident!

Call Taker

Dispatcher

Task Manager Resources (police units)

monitor

assign task

phone
call

Incident

handle
incident

Situation
display

Network

Figure 1. Highlight of a CAD system for police

We applied XVCL to manage variants in UML

software models documenting FRS and CAD product

lines [5]. In yet another project, we managed evolution of

the City Guide System product line with XVCL.

XVCL is also effective in improving program
maintenance. It is a well-known fact that redundant code

obstructs program understanding and maintenance. Yet,

programs are often polluted by redundant code. We

analyzed a recently released Java Buffer library, JDK 1.4

Merlin and found many redundancies – the same or very

similar code fragments recurring in may places. With

XVCL, we generated the same Buffer library classes from

compact, non-redundant meta-components whose size, in

LOC, is just 40% of the original library. We posted the

detailed results of this analysis at:

http://www.comp.nus.edu.sg/labs/software/xvcl/buffer.html.

We envision many other applications in software and
non-software domains, as we can apply XVCL to any

domain that can be represented as a collection of textual

documents.

References

[1] Bassett, P., Framing software reuse - lessons from real
world, Yourdon Press, Prentice Hall, 1997

[2] Wong, T.W., Jarzabek, S., Myat Swe, S., Shen, R. and

Zhang, H., “XML Implementation of Frame Processor,” Proc.
ACM Symposium on Software Reusability, SSR’01, Toronto,
Canada, May 2001, pp. 164-172

[3] Jarzabek, S. and Seviora, R., “Engineering components for

ease of customization and evolution,” IEE Proceedings -
Software, Vol. 147, No. 6, December 2000, pp. 237-248, a
special issue on Component-based Software Engineering

[4] Cheong, Y.C. and Jarzabek, S., “Frame-based Method for

Customizing Generic Software Architectures," Proc. Symposium
on Software Reusability, SSR’99, Los Angeles, May 1999, pp.
103-112

[5] Jarzabek, S. and Zhang, H., “XML-based Method and Tool
for Handling Variant Requirements in Domain Models”, Proc. of
5th IEEE International Symposium on Requirements
Engineering, RE’01, IEEE Press, August 2001, Toronto,
Canada, pp. 166-173

Proceedings of the 25th International Conference on Software Engineering (ICSE�03)
0270-5257/03 $17.00 © 2003 IEEE

